next up previous
Next: About this document ... Up: Non-integrable cases in satellite Previous: Acknowledgement

Bibliography

1
Ferrándiz, J.M. and Sansaturio, M.E. (1995) Non-existence of rational integrals in the J22-problem, Phys. Lett. A, 207, 180-184.
2
Ferrándiz, J.M., Sansaturio, M.E. and Vigo-Aguiar, I. (1996) Non integrability of the truncated zonal satellite Hamiltonian at any order. Phys. Lett. A, 221, 153-157.
3
Irigoyen, M. and Simó, C. (1993) Non integrability of the J2-problem, Celest. Mech., 55, 281-287.
4
Sansaturio, M.E., Vigo-Aguiar, I. and Ferrándiz, J.M. Non integrability of the main problem of the satellite of a triaxial body. (submitted to Astron. J.).
5
Szebehely, V.G. (1967) Theory of Orbits. The Restricted Problem of Three Bodies, Academic Press, New York.
6
Vinti, J.P. (1960) Theory of the orbit of an artificial satellite with use of spheroidal coordinates, Astron. J., 65, 353-354.
7
Vinti, J.P. (1969) Improvement of the spheroidal method for artificial satellites, Astron. J., 74, 25-34.
8
Yoshida, H. (1983) Necessary condition for the existence of algebraic first integrals I: Kowalevski's exponents, Celest. Mech., 31, 363-381.
9
Yoshida, H. (1983) Necessary condition for the existence of algebraic first integrals II: Condition for algebraic integrability, Celest. Mech., 31, 381-399.
10
Yoshida, H. (1987) A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential, Physica D, 29, 128-142.
11
Yoshida, H. (1988) Non integrability of the truncated Toda lattice Hamiltonian at any order, Commun. Math. Phys., 116, 529-538.
12
Yoshida, H. (1989) A criterion for the non-existence of an additional analytic in Hamiltonian systems with n degrees of freedom, Phys. Lett. A, 141, 108-112.
13
Ziglin, S.L. (1980) Branching of solutions, intersections of separatrices and non-existence of an integral in the dynamics of the rigid body, tr. Mosk. Mat. Obshch., 41, 287-303.
14
Ziglin, S.L. (1983) Branching of solutions ad non-existence of first integrals in Hamiltonian mechanics, Funct. Anal. Appl., 16, 181-199.




1998-10-24