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Abstract

We investigate a Runge-Kutta like method of order three with two evaluations
per step, for the numerical integration of separated systems of ODEs. The formula

being L-stable do not require Jacobian evaluations. Some numerical examples are
discussed in order to show the good performance of the new scheme when applied
to stiff systems.

1 Introduction

Our aim in the present work is to describe a new L-stable method of order
three, involving two function evaluations per step, for the numerical integra-
tion of separated systems of ODEs. We will consider autonomous systems
given by

yf1) = fll(y(l)) + flz(y(z)) + ...+ flm(y(m)) )
Yiz) = fa(yy) + foa(y2) + - + fom(Yim))

yzm):fml(y(l)) —I_fm?(y(?)) + ... ‘|’anTn(y(m))7 (1)

that is, systems in which f: IR™ — IR™ can be put in the form f(y) = F(y)1
with ¥ = (y(1), Y@, - - - Yemy))s 1= (1,1,...,1)7 and where F is the matrix

f11(y(1)) flz(y(2)) f1m(y(m))

Fly) = f21(:y(1)) fzz(:y(z)) f2m(iy(m))

Y

frr(yy) fm2(y) = Frnm(Yim))
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with f;; : IR — IR. Systems of this type appear for example when solving
some parabolic partial differential equations by the method of lines. We will
show an example of this later, by obtaining a system of ODEs for the method
of lines approach to solving the Burgers’ equation.

2 Construction of the method.

In our recent paper [3], a new family of explicit and linearly implicit two-stage
methods of order three for the numerical integration of scalar autonomous
ODEs is proposed. These methods can be seen as a generalization of the
explicit Runge-Kutta methods providing better order and stability results with
the same number of stages.

The general form of a third order two-stage method of our family (see [3] for
more details) is given by

Ynt1 = Yn + hle(S) )

where ky, ko and s are given by

ky — k
b= fl)s b= flun b hesk), 5= 2R
Czlﬁ
¢ =2/3 and G takes the form
1+ 2d 1 d d n* .
14 -|-2 L +3é+6 2524‘27%82
G(S) = = 1=3 ) (2)

14 dis+ dys? + Zdisi
i=3
Note at this point that the formulae do not require Jacobian evaluations.
Moreover, our methods are related to Rosenbrock-type methods such as W-
methods [6], MROW-methods [8] and generalized Runge-Kutta methods [7],
in which the exact Jacobian is no needed. For an excellent survey of some of
these methods the reader is referred to [4].

Some third order methods with special properties (such as A-stability, L-
stability, order four when applied to linear problems, etc) have been developed
in [2,1,3], where also some numerical experiments can be found.

From the Butcher theory we know that a Runge-Kutta method which has
order ¢ for a scalar initial value problem may have order less than ¢ when
applied to a problem involving a system of differential equations. However,
when ¢ < 3, any Runge-Kutta method has the same order applied to systems
as it has when applied to the scalar autonomous problem (see [5] pp. 173175
for more details). Unfortunately for our methods this is not true because of the
nonlinearities that arise from the term s in (2) and from the function G in (2)
(note that term s and function GG are not defined when applied to systems).
However, when considering separated systems, it is possible to implement our
methods in such a way that the resulting formula works well and with the
same order as in the scalar autonomous case. We will give more details later.



When extending our methods in order to apply them to separated systems of
ODE’s, it is desirable to consider formulas in which the denominator in (2) is
given in the form (1 — as)® (o € IN) so that only one LU-decomposition per
step i1s needed. Moreover, we look for a third order method being L-stable,
with the previous property.

All we need for this is to take o = 3 and let the free parameters in (2) satisfy
dl == —3Cl, d2 == 3@2, d3 == —GS, (3)

where, in order to get L-stability, a is the root of the polynomial 62> — 1822 +
9x — 1 = 0 given by

6 1 2 2 1 2

a=1+ £ sin | — arctan £ — £ cos | —arctan £ (4)
2 3 4 3 4

/2 0.435866521508459 , (5)

and we take n; = 0 for 2 > 3, and d; = 0 for + > 4. We obtain in this manner
a method with the above properties. The associated method for problem (1)
(of the same order) is given by

Ynt+1 = Yn + hG(S) kl ) (6)
where
ki = fyn) = F(ya) 1, ko= f(yn + heakr) = F(yn + hegki) 1,

c2 =2/3 and S is now a matrix given by

Ji1(Yn() + heakiqy) — fii(yn) o Jim (Un(my + heakim)) = Fim (Ynim))
e ki Ca ki(m)

Tt (Un(ry + heakiy) = frnt (Yn(1)) o Fom (Un(m) + he2kion)) = fnm (Yn(m))
e ki Ca ki(m)

where ¥, = (Yn(1)s Yn(2)s - - - » Yn(m)) and kv = (K1), kiays - o0 Eim))-
Note that the method is linearly implicit.

It is also possible to integrate with our methods some non-autonomous scalar
ODEs and separated systems. In fact, those that when rewritten in autonomous
form in the usual way (that is, adding the trivial equation 2’ = 1) are given
by a separated system (1). The resulting system is one dimension higher.
However, noting that the last row in S has all entries equal to zero, it can be
seen that our methods can be implemented without increasing this dimension.

3 Numerical experiments.

Next we will consider a numerical experiment involving the Burgers’ equation
2

u
U +F UUy = UV Uypy or ut—l—(?) = VUgpe, v >0, (7)



where v = u(x,t) and we take 0 < 2 < 1 and 0 < ¢ < 1. The initial and
Dirichlet boundary conditions are taken as

u(z,0) = (sen(37z))? - (1 — :1;)3/2, u(0,1) =u(l,t) =0. (8)
This nonlinear parabolic problem is taken from [4] (see pp. 349 and 443) and
was originally designed by Burgers (1948) as "a mathematical model illustrat-
ing the theory of turbulence”. Nowadays it remains interesting as a nonlinear

equation resembling the Navier-Stokes equations in fluid dynamics which pos-
sesses for v small, shock waves and, for v — 0 discontinuous solutions.

Now we apply the numerical method of lines to this partial differential equation
as follows. We discretize along the x-axis with a uniform mesh and replace all
spatial derivatives in the right equation of (7) by centered finite difference
approximations. Taking
1
SN+
then a system of separated ODEs for the method of lines approach to solving
Burgers’ equation is

Ax ui(t) = u(iAwx,t) 1=0,1,....N+1, (9)

2 2
’ Uiy — Uiy Uip1 — 2u; 4 v .
uZ 4A$ v (Ax)z 2 2 2 9 9
u;(0) = (sen(3miAz))* - (1 — iA:L')S/Q, 1=1,2,....,N, (10)
where u; = u;(t) and we have from the boundary conditions that wug(t) =

un+1(t) = 0. After the appropriate exclusions and substitutions we can note
by inspection that the above system has a tridiagonal Jacobian matrix.

Now we will apply the method of the preceding section to this separated
system of ODFEs taking N = 24 and v = 0.2 in (10). For this values, the
system becomes banded of dimension 24 and the associated Jacobian matrix
is tridiagonal. Tt is easy to show that the problem is mildly stiff. In fact, we
have that the eigenvalues of the Jacobian are all real and range between -499
and -1 (with the dominant eigenvalue being close to -498) for the integration
interval considered.

First we integrate this problem with fixed stepsize h = 0.04. Figure 1 shows
the numerical solution we obtained. With fixed step size h = 27™ for various
m =2,3,...,10 over 2" steps, the value of the numerical solution (for t = 1)
was computed using our method. We also computed very carefully (taking
h = 0.0001) the exact solution at the specified output point. The magnitude
of the error E (measured in the Euclidean norm of the space IR*') for the
different step sizes h is shown in Figure 2 in double logarithmic scale. On the
logarithmic scale used for this figure, the error is represented very closely by
a straight line whose slope equals the order of the method. The figure show
complete agreement with our theoretical result.

We repeat our numerical experiment taking N = 24 and v = 0.004 in (10).
Again the system of ODEs we get for the method of lines approach to solving
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Fig. 2. Error as a func-

Fig. 1. Numerical solution: MOL approach to tion of step size (dou-
Burgers’ equation taking v = 0.2, N = 24 and ble logarithmic scale)
h =0.04. for our method.

Fig. 3. Numerical solution: MOL approach to Burgers’ equation taking v = 0.004 ,
N =24 and h = 0.04.

Burgers’ equation is banded of dimension 24, but now the eigenvalues of the
tridiagonal Jacobian matrix are most of them complex (with all real parts
being negative and ranging between -10 and 0, and all imaginary parts ranging
between -14 and 14).

Figure 3 shows the numerical solution we obtained in this way. The solution
possesses shock waves that later fuse. Note at this point that Burgers’ equation



can be thought of as a hyperbolic problem with artificial diffusion for small v.
Note also that the imaginary parts of the eigenvalues of the Jacobian matrix
introduce oscillations in the numerical solution (as can be observed in the

figure).

4 Conclusions.

Our new method is primarily useful when applied to many separated stiff
systems for which no accurate evaluation of a Jacobian is available or the
evaluation of the Jacobian is too expensive. For some non stiff problems for
which function evaluations are expensive, our explicit method might be more
efficient than the usual explicit Runge-Kutta methods. This follows from the
fact that for a given number of stages (or function evaluations per step), our
method attain bigger order than the Runge-Kutta ones, as we have pointed
out before.

Though several practical questions remain to be solved, for example, how to
extend our methods in order to integrate a wider class of problems, the new
method seem quite promising, for instance in the context of solving some
nonlinear parabolic equations (by the method of lines).
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