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Abstract

We suggest some modi�cations to a method of Kirchgraber which

result in improved accuracy and shorter computation time.

Subject Classi�cations: AMS(MOS): 65L05.

Introduction. The LIPS-code described by Kirchgraber in [3] is an
integration procedure based on the method of averaging. It is intended for
perturbed systems such that the unperturbed one has only periodic solutions
with a common period T and the perturbation "f(t; x; ") is also T -periodic.
This method gives approximations to the real solution for values of the vari-
able which are integer multiples of the period T , as long as nT remains in
some interval [0; L=j"j] for a �xed L. The basic idea of the ODE-solver is to
use the Poincar�e-map to de�ne a new system whose solutions are close to the
real ones. The main characteristic of these new equations is that they can
be integrated numerically with large step-size.
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1. First we correct a minor error in [3]. In page 637 one reads

_y = q �P (y) ; y(0) = � (6)

whereas it should be

_y =
1

T
q �P (y) ; y(0) = � :

Consequently, expressions (8) and (9) in the same page should be also sub-
stituted by

��NO1
T
q �P
(H; �)

and
��n1
T
q �P
(H; �) ; n = 1; : : : ; NO

respectively.
Alternatively, if (6) is kept unchanged, we maymodify the expresion in (7)

to
H = L=(T j"jNO)

and then we use ��nq �P
(H; �) ; n = 1; : : : ; NO to approximate �f (nTH; �).

2. Kirchgraber proposes to use a Runge-Kutta method with constant step-
size for the calculation of the Poincar�e-map and then solve numerically the
equation

_y =
1

T
q �P (y) : (1)

Our experience shows that the computation of the Poincar�e-map with the
help of a special method for perturbed systems reduces considerably the
number of evaluations in Kirchgraber's method. A Runge-Kutta method will
be still used to integrate (1). We will illustrate this fact with the example
discussed by Kirchgraber in [3]. He integrates the single harmonic oscillator
with a cubic nonlinearity

�y + y = "y3 ; y(0) = 1 ; _y(0) = 0 : (2)

2



In [1], Bettis modi�ed the classical di�erence methods of numerical inte-
gration to integrate certain products of an ordinary polynomial and a Fourier
polynomial without truncation error. For instance, by modifying two coe�-
cients of the method of Adams-Bashforth of n+1 steps he derived a method
which integrates exactly the function

Pn�2(t) + a0 cos!t+ b0 sin!t

where Pn�2(t) is an ordinary polynomial of degree n � 2 and ! a �xed fre-
cuency.

We have applied this method (with three, �ve, seven and eight steps) to
�nd the Poincar�e-map of (2), obtaining

Table 1: LIPS-code of order 1 with 3-step Bettis.

" � NI NO G

10�3 5:5 � 10�3 40 2 1:742 � 103
10�4 6:5 � 10�4 90 3 4:563 � 103
10�5 3:4 � 10�5 170 3 7:683 � 103

We have kept the format and the symbolism of the tables in [3] the better
to visualize the e�ciency of this modi�cation. We may see that the number
of function evaluations necessary to get the same precision obtained in [3] is
now roughly divided by ten.

3. Our third observation concerns a class of equations to which Kirchgraber
applies his method. These are the perturbed conservative oscillators, i.e.,
equations of the form

�y + !2y = "f(y) : (3)
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Table 2: LIPS-code of order 2 with 5-step Bettis.

" � NI NO G

10�3 0:9 � 10�5 80 4 1:383 � 104
10�4 1:5 � 10�7 250 6 4:727 � 104
10�5 1:1 � 10�9 470 12 1:632 � 105

Table 3: LIPS-code of order 3 with 7-step Bettis.

" � NI NO G

10�3 5:2 � 10�8 110 8 5:897 � 104
10�4 4:3 � 10�11 200 15 1:632 � 105
10�5 8:9 � 10�14 500 35 7:903 � 105

The key to the succes of Kirchgraber's method lies in the fact that it inte-
grates T -periodic solutions exactly (not taking into account roundo� errors)
and therefore makes good long-term predictions for solutions with periods
close to the unperturbed period T .

We will show that it is possible to make a �rst approximation to the
real period T (") which results in a spectacular improvement in accuracy and
computation time; this modi�cation has been already applied to Bettis meth-
ods by Ferr�andiz and Novo [2]. We remark that although it is theoretically
possible to �nd the exact period T (") by numerical or symbolic means, our
procedure requires a much smaller additional computation. This modi�ca-
tion will be referred to as the NEP-code (for Near Exact Period).
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Table 4: LIPS-code of order 4 with 8-step Bettis.

" � NI NO G

10�2 5:5 � 10�7 170 6 8:174 � 104
10�3 5:2 � 10�11 250 20 3:557 � 105
2 � 10�4 8:5 � 10�14 500 45 1:385 � 106

For equation (3) we use the approximation

2�p
!2 � a"

where the value of a is calculated to eliminate secular �rst order terms.
Usually, this is achieved by �nding the coe�cient of cos t in the cosine series
of f(cos t). We have applied this modi�cation of the period to the same
example (2) obtaining the following results:

Table 5: NEP-code of order 1 with 8-step Bettis.

" � NI NO G

10�3 2:9 � 10�12 300 1 5:096 � 103
10�4 3:8 � 10�15 500 1 7:696 � 103
10�5 5:8 � 10�18 900 1 1:290 � 104

In this particular case T = 2�=
p
1� 0:75" and we have also taken L = T .

According to table 5 the NEP-code (of order 1) for " = 10�3, 10�4, 10�5 using
less than 2 � 104 functions evaluations, provides a result which is correct up

5



to an error
2:9 � 10�12; 3:8 � 10�15; 5:8 � 10�18

respectively. In contrast, the LIPS-code of order 1, using almost the same
number of evaluations (see table 1 in [3]) yields a result which is correct up
to an error

6:6 � 10�3; 6:6 � 10�4; 6:8 � 10�5

respectively. Thus we gain 9, 11 and 13 digits in each case.
We have performed the numerical experiments with quadruple precision

(the double precision of NOS-VE FORTRAN) on a CYBER-930 machine.
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