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Resumen

La estabilidad y la absorci�on de energ��a por resonancia de una con�guraci�on de equi-
librio magnetohidrodin�amico vienen dadas por las ecuaciones linealizadas de la Magne-
tohidrodin�amica (las cuales combinan las ecuaciones de Navier-Stokes, de Maxwell y las
relaciones constitutivas de estado y de Ohm en la descripci�on del comportamiento de un
uido magnetizado). Este es un tema ampliamente tratado en la literatura (ver por ejem-
plo [1], [2]) en lo que concierne a la estabilidad del equilibrio, pero no as�� respecto de la
resoluci�on efectiva de dichas ecuaciones linealizadas.

El principal problema radica en que para determinados valores de la frecuencia tem-
poral, que es un par�ametro de la ecuaci�on, �esta es singular y los m�etodos cl�asicos no se
pueden adaptar a su estudio. Dichos valores de la frecuencia corresponden a los modos
resonantes y la absorci�on de energ��a se realiza precisamente para estos valores. En prin-
cipio podr��an existir familias enteras de soluciones dadas por funciones arbitrarias en la
regi�on singular (ver [3]), pero s�olo una de ellas es f��sicamente correcta.

En la comunicaci�on se estudia el caso de una con�guraci�on cil��ndrica de plasma,
mostrando anal��tica y num�ericamente el comportamiento de la verdadera soluci�on y la
absorci�on de energ��a correspondiente. Asimismo mostramos que la utilizaci�on sin precau-
ciones de ciertos algoritmos num�ericos puede dar lugar a conclusiones err�oneas.
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Abstract: The magnetohydrodynamics equations for the case of a cylinder lin-

earized around an equilibrium state with vertical magnetic �eld reduce to a single

singular second order partial di�erential equation where the time frequency enters

as a parameter. Although there could exist whole families of solutions depending on

arbitrary values at the singularity, only one of them is physically correct. We anal-

yse theoretically and numerically the problem and the physical consequences of our

results.

AMS (MOS) Subject Classi�cation: 76W05, 35C10.

x1 Introduction.

Let us consider a stationary plasma con�ned in a region U � I, where U is an open
set of R2, I an interval, possessing a vertical magnetic �eld B =

�
0; 0; B(x; y)

�
; density

% and pressure p, and satisfying the state equation of polytropic gases p = A% . Its
behaviour is ruled by the magnetohydrodynamic (MHD) equations (see for ex. [1-3]) which
in this simple con�guration state that the total pressure p+B2=2 is constant through the
domain �lled by the plasma. Small perturbations of these magnitudes satisfy the linearized
magnetohydrodynamic equations, which after a Fourier transform z 7! k in the vertical
variable and Laplace transform t 7! ! in time, become

div(frp�) + g p� = div(f V) + h (1)
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where p� is the (transformed) perturbed total pressure,

f =
1

!2%� k2B2
; g =

1

p

!2%� k2p

!2%
�
1 +

B2

p

�
� k2B2

;

V = %u0 +
kB

!
b0; h =

k

!
b0 � rB+

ik%

!
u03 +

ik2B

!
b03 �

i!%

p
p0
�

!2%
�
1 +

B2

p

�
� k2B2

:

u0, b0 and p0
�
denote the perturbed velocity, magnetic �eld and total pressure at the instant

t = 0. The function f becomes singular where the local Alfv�en frequency �kBp
%
matches

the time frequency !. If this happens, resonance occurs and the plasma absorbs energy at
the singular set �:= ff = 1g from any external electromagnetic wave of this frequency.
This fact, as well as its applications to plasma heating (for magnetic fusion purposes) and
magnetospheric oscillations, are well known for some time ago (see [4-9]). g and h may also
become singular at the so-called magnetosonic frequencies; for independent reasons (such
as the fact that the beta of the plasma p=B2 is usually small) they are far away from the
Alfv�en frequencies, and less relevant in many plasmas, such as the incompressible ones. We
will exclude them from our consideration, and assume that g and h are regular throughout
the (bounded) domain U under consideration. Also we exclude stationary perturbations,
so ! 6= 0. Since we intend to study the behaviour induced by the singular term f , we will
simplify the equation by taking g = 0, i.e. we consider the principal part of the di�erential
operator.

Although for a �xed ! (1) looks a typical elliptic equation, f is singular and changes
signs at both sides of the singular set �, so that standard methods cannot be applied. An
obvious variation is to de�ne a new space H1(f; U) as (roughly) the set of functions u such
that Z

U

juj2 +
Z
U

jf j jruj2 = kuk2H1(f;U)

is �nite. This space possesses good trace properties at the points of �, making possible to
solve the homogeneous problem in each component V of U n � with arbitrary (necessarily
constant) values in each component of @V \ � and Dirichlet conditions at @V \ @U . As
usual one considers the weak form of (1) and the Lax-Milgram theorem. Unfortunately, the
term div(fV) is not in the dual space H�1(f; U) of H1

0 (f; U) and further preparatory work
is needed. Which one obtains is one regular solution of the Dirichlet problem coinciding
in � with any previous given function (see [10] and the references included there).

To select among these solutions the correct one we must remember that we are dealing
with the Fourier-Laplace transform

p�(!;x) =

Z 1

0

ei!tq�(t;x) dt
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of the true perturbed pressure q� as a function of time. Under very general conditions it
must happen that for a real !, p�(!;x) should be the limit of p�(! + i";x) when " # 0: in
the physicists' language, the oscillatory solution is limit of damped solutions. For " > 0,
f is regular throughout U and the problem is coercive; thus any Dirichlet problem has a
unique solution for " > 0 (see [10]).

In this paper we analyse theoretically and numerically this facts in a simple con�gu-
ration.

x2 Theoretical Results.

We consider now that the plasma �lls a hollow cylinder r1 < r < r2, and assume that
its density % and magnetic �eld B depend only on the radius r (so the same happens with
p�).

Let F = !2% � k2B2. After a Fourier transform � ! n in the angle variable, the
homogeneous problem associated to (1) becomes

u00 +

�
1

r
� F 0(r)

F (r)

�
u0 � n2

r2
u = 0 : (2)

At any simple zero r0 of F , F 0=F behaves as 1=(r � r0). For further notational simpli-
�cation, and without a�ecting the properties of the equation we will take k2B2 = 1 and
%(r) = r; for !2 = 1, then � := fr = 1g and (2) becomes

u00 +

�
1

r
� 1

r � 1

�
u0 � n2

r2
u = 0

which we recognise as an hypergeometric equation. Its classical theory (see [11-13]) allows
us, after a cumbersome but essentially straightforward calculation, to write two indepen-
dent solutions in B(1; 1) as

v1(r) = rn(1� r)2
1X
k=0

(�(n))k(�(n))k
(3)k

(1 � r)k

k!
;

v2(r) =� 2 rn

(�(n) � 2)2 (�(n) � 2)2
+

2 rn(r � 1)

(�(n) � 1) (�(n) � 1)

+ rn(1� r)
1X
k=0

(�(n))k(�(n))k
(3)k

�
	(�(n) + k) + 	(�(n) + k)

�	(3 + k)�	(1 + k)
� (1� r)k+2

k!
+ log(1� r) v1(r) ;
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where (x)k = �(x + k)=�(x),

�(n) = n+ 3=2 +
p
n2 + 1=4;

�(n) = n+ 3=2�
p
n2 + 1=4;

and 	 is the logarithmic derivative of the � function.

We see that
v2(r) = w2(r) + log(1� r)v1(r) ;

where v1 and w2 are real valued functions. Also notice that the wronskian determinant
W (v1; w2) = w02v1 � w2v

0

1 behaves as

W (v1; w2) = a(r � 1) +O (r � 1)2

near 1, with a = 4=(�(n)� 2)2 (�(n) � 2)2 > 0. These function are C1 and, except for the
term log(1 � r), real valued in [r1; r2]. In the general case we would have log(r(!) � r),
where r(!) is the (complex) zero of F for ! near �1. Hence, for � > 0,

log(1 � (1 + �)) = log(1� (1 � �)) + i �� ;

where � = �1, according to which branch of the logarithm is chosen. Let us study the
correct determination of this imaginary part.

Lemma 1. Let !0 = �1. Then � is the sign of !0
F 0(1)

(F 0(1) = 1 in our case).

Proof: What we denote by u is in fact the Fourier-Laplace transform of the total
pressure, hence the solution of (1) for real ! should be the limit of (damped) solutions
for ! + i ", " # 0. Let !(r) be the (complex) frequency which makes F (!(r); r) = 0 near
(!0 = �1; r = 1). Then

@F

@!
!0 + F 0 = 0 ;

that is, 2!(r)%(r)!0(r) + F 0(r) = 0. This implies

!(r) � !(1) = � F 0(!(1); 1)

2!(1)%(1)
(r � 1) +O(r � 1)2 ;

thus, if r(!) is the (complex) zero of F (!; r(!)) near (! = !0; r = 1),

r(!) � r(!0) = r(!) � 1 = � 2!0%(1)

F 0(!0; 1)
(! � !0) +O(! � !0)

2 :

Thus the sign of the imaginary part of r(!0+ i ") is the sign of �!0=F 0(1). When positive,
r(!) lies in the lower half plane and when r goes from 1� � to 1 + �, r(!) � r goes from
r(!) � 1 + � to r(!) � 1� � in the lower half plane, so that its argument changes from 0
to ��; otherwise, from 0 to �. Always � = sgn(!0=F 0(1)).
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Even in the case " = 0 it is possible to tackle the non-homogeneous problem by the
same procedure as in the classical Sturm-Lioville theory, constructing the Green function,
and one can easily checks that the solutions of this problem have the same behaviour.

How this fact relates to energy absorption? The increase of energy in X is given by

dE

dt
= �

Z
@X

p� v � n d�

(where n denotes the outer normal). It may be shown that the Fourier transforms P and
V of p� and v �n satisfy V = (i !=F )P 0. Since we are dealing with a single resonant sheet,
assume that p� has only the Fourier modes �k in z (so that F = !2%�k2B2 is �xed in the
problem). We will study the integral above for a cylindrical surface r = a. As we know,
under fairly general conditions, and with a somewhat relaxed notation,Z

T�R

p�(t; a; �; z)v � n(t; a; �; z) d� dz =

=

Z
Z�R

bp�(t; a; n; k) (v � n)_(t; a; n; k) dndk
=
X
n2Z

�
(P (t; a; n; k)V (t; a;�n;�k) + P (t; a; n;�k)V (t; a;�n; k) � :

Hence the output of energy through r = a is

�
X
n2Z

�
(P (t; a; n; k)V (t; a;�n;�k) + P (t; a; n;�k)V (t; a;�n; k) � : (3)

Assume also that the boundary conditions determine a one-dimensional space of solutions
depending only on !2 (such as decay at in�nite, u(r2 =1) = 0, or a solid wall u0(r2) = 0,
etc.; most real problems are in this class). We may construct a generator as follows:

Let
� = �1v1 + �2v2 ;

�1; �2 real;
� = ���2v1 ;

with � = 0 for r < 1 or � = 1 for r � 1. Then

P = �(1; n; l) (� + i �) ei t + �(�1; n; l) (� � i �) e�i t ;

V =
i

F
�(1; n; l) (�0 + i �0) ei t � i

F
�(�1; n; l) (�0 � i �0) e�i t :

Since p� is real, P (�!;�n;�k) = P (!; n; k), so the same happens for the coe�cient
�. Also dE=dt is real, so it is enough to take the real part of the terms in (3). The real
part of the non-oscillatory terms is therefore

1

F
(j�(�1; n; l)j2 + j�(1; n; l)j2) (�0� � ��0)
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for a �xed mode n (note that this corresponds to the sums in (3) not a�ected by e2i t or
e�2i t; the time mean of these is zero and hence they are not relevant in the net energy
increase). The wronskian determinant �0� � ��0 vanishes for r < 1, and satis�es W 0 =
(F 0=F � 1=r)W ; hence W = AF=r for r � 1, A a constant. One easily gets

A =
r

F
�22�(v

0

2v1 � v2v
0

1) =
r

F
�22�

�
w02v1 � w2v

0

1 +
1

r � 1
v21

�
;

which as shown before, is positive at r = 1. (Recall that F = r � 1, w02v1 � w2v
0

1 =
a(r � 1) +O(r � 1)2, a > 0, v21 = O(r � 1)4.)

Hence for a set X bounded for r = a and r = b, dE=dt is a continuous function of
(a; b) whenever both are less than or greater than 1; however, if a < 1, b > 1, dE=dt jumps
by a �xed amount. We have proved

Theorem 2. Energy absorption due to alfvenic resonance takes place at the singular
set.

Notice that the fact that � 6= 0 (that is, that an imaginary part occurs at the solution
after the singularity r = 1) is essential for the existence of this phenomenon. Any solution
not taking this term in consideration is physically erroneous. This would happen if one
applies directly any of a number of numerical methods of integration which tolerate the
singular point, but do not get the solution analytic in !, as we will show next.

x3 Numerical Results.

The integration of the initial value problem in a given interval (in our case r 2
[0:5; 1:5]) is delicate because of the singularity at r = 1. If however, one takes r = x + i",
x 2 [0:5; 1:5], " > 0, not only the singularity disappears, but what we obtain is the correct
solution in the limit " = 0. This has been done in equation (2) for initial values u(0:5) = 1,
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u0(0:5) = 1, n = 1; 2 , and " = 10�1; 10�2; 10�3 (see �gure 1).
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Fig. 1

Initial values problem for n = 1; real and imaginary part of the solutions.

Behaviour for n = 2 is similar, as shown in �gure 2.
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Fig. 2

Real and imaginary part of the solutions for n = 2.

Observe that the behaviour of the imaginary part is as predicted: zero up to the
singularity r = 1, and then a nontrivial function. By contrast, direct integration of (1)
with " = 0, even if the algorithm somewhat surpasses the critical point at r = 1, will never
generate an imaginary part for a real equation with real initial value. We have checked
that for " = 0; the real part is correctly obtained but the imaginary part of u is always
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zero, as one would expect.
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Fig. 3

Boundary value problems for n = 2; real and imaginary parts of the solution.

As for the boundary problem, the same method may be used. The regular boundary
value problems obtained by considering r = x + i ", x 2 [0:5; 1:5], with the conditions
u(0:5) = 0 = u(1:5) and " = 10�1; 10�2; 10�3, show the convergence of the solutions to
the correct physical solution. For n = 2, we have the results of the �gure 3.

These graphics have been obtained by using the shooting method with Mathematica,
which allows a high degree of interactivity and is specially good at dealing with singu-
larities. If we execute this method setting directly " = 0, we still get an answer, but a
completely wrong one (�g. 4).
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Fig. 4

The wrong answer for " = 0.

In general, the behaviour of this integrator for " = 0 is erratic. For n = 1, one gets
the correct answer for some try values of u0(0:5) and a wrong one for others. For n = 2 it
is always false.
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Finally, to emphasise the fact that one cannot choose the value of u at r = 1 arbitrarily
and then solve the boundary problem at both intervals [0:5; 1], [1; 1:5], we have set u(1) =
10 and found the solutions for n = 2 for a slightly attenuated frequency ! = 1+0:1 i (�g. 5).
The solutions are obviously not di�erentiable. This shows that the problem should not be
treated as an equation with a singular boundary; one cannot impose arbitrary Dirichlet
conditions at r = 1. Those are determined by the original problem in a complex setting.
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Fig. 5

The solutions for u(1) = 10; real and imaginary part.
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