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ABSTRACT: The magnetohydrodynamics equations in a cylinder linearized around
an equilibrium state with vertical magnetic field reduce to a single singular second
order partial differential equation where the time frequency enters as a parameter.
Although there could exist whole families of solutions depending on arbitrary values
at the singularity [1], only one of them is physically correct. We analyze theoretically
and numerically the problem and the physical consequences of our results.
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1 THE SETTING OF THE PROBLEM.

Let a stationary plasma fill a hollow cylinder ro < r < rq, and assume that its density
p and magnetic field B = (0,0, B) depend only on the radius r, and that it satisfies
the polytropic state equation p = Ap”. For a fixed Fourier mode [ in z, let u be the
Fourier-Laplace transform (f — w) of a small perturbation p. of the total (kinetic
plus magnetic) pressure. If the values of the perturbed velocity and field are zero at
t =0, u satisfies
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The points where the local Alfvén frequency wy = +1B/,/p matches the time fre-
quency w are singular and very important in the study of magnetic oscillations,
[2, 3, 4]. To simplify the study of this singularity, we will consider only the prin-
cipal part of the differential operator and set the second term of (1) to zero; let
F = w?p — I*B%. After a Fourier transform 6 — n in the angle variable, (1) becomes
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At any simple zero rq of F', F'/F behaves as 1/(r — rq). For further notational sim-
plification, and without affecting the properties of the equation we will take [2B?* = 1
and p(r) = r; for w? =1, (2) becomes
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which we recognize as an hypergeometric equation. Its classical theory [5, 6] al-
lows us, after a cumbersome but essentially straightforward calculation, to write two
independent solutions in B(1,1) as

(1 —r)k+2
k!

where (2)r =, (x+k)/, (2), a(n) = n+3/24+/n?+ 1/4, B(n) = n+3/2—/n? + 1/4,

and W is the logarithmic derivative of the , function.

+ log(1 — r)us(r),

2 MAIN RESULTS.

We see that vy(r) = wa(r) + log(l — r)vy(r), with v; and wq real functions. Also
notice that the wronskian determinant whvy — wqv] behaves as a(r — 1) + O (r — 1)?
near 1, with @ = 4/(a(n) —2)2 (B(n) — 2)2 > 0. These function are C' and, except
for the term log(1 — r), real valued in [rg,r;]. In the general case we would have
log(r(w) —r), where r(w) is the (complex) zero of F for w near +1. Hence, for 6 > 0,
log(1 — (1 +4)) =log(l — (1 —=9))+iom, where o0 = +1, according to which branch
of the logarithm is chosen. Let us study the correct determination of this imaginary
part.

Lemma 1 Let wy = 1. Then o is the sign of wo/F'(1) (F'(1) =1 in our case).

o0

Proof. What we denote by w is in fact the Fourier-Laplace transform / emtp*(t, x) dt;
0
hence the solution of (1) for real w should be the limit of (damped) solutions for
w4ie, e} 0. Let w(r) be the (complex) frequency which makes F(w(r),r) =0 near
(wo = +1,r=1). Then
or
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that is, 2w(r)p(r)w’(r) + F'(r) = 0. This implies

F(w(1),1)
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thus, if r(w) is the (complex) zero of F(w,r(w)) near (w = wp, r = 1),

_ 2wop(1)

P oo 1) (w—wo) + O (w—wo)?.

r(w) = r(wo) = r(w) —

Hence the sign of the imaginary part of r(wo 4 7€) is the sign of —wo/F'(1). When

positive, r(w) lies in the lower half plane and when r goes from 1 —§ to 1 +9, r(w)—r

goes from r(w) — 1 4§ to r(w) — 1 — § in the lower half plane, so that its argument
changes from 0 to —; otherwise, from 0 to m. Always o = sgn(wo/F'(1)). O

How this fact relates to energy absorption? The increase of energy in X is given

by
dE
= / PV -ndo

(where n denotes the outer normal). It may be shown that the Fourier transforms P
and V of p, and v-nsatisfy V = (iw/F') P'. Since we are dealing with a single resonant
sheet, assume that p, has only the Fourier modes +/ in z (so that F' = w?p — [*?B?
is fixed in the problem). We will study the integral above for a cylindrical surface
r = a. As we know, under fairly general conditions, and with a somewhat relaxed
notation,

/ pe(t,a,0,2)v-n(t,a,0,z)d0dz =
TxR”

e /meﬁ*(t7a7n7l) V\?(t,a,n,l)dndl

= > ((P(t,a,n, ) V(t,a,—n,—1)+ P(t,a,n, =) V(t,a,—n,1)) .
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Hence the output of energy through r = a is

— Z ((P(tya,n,)V(t,a,—n, =)+ P(t,a,n, =) V(t,a,—n,l)) . (3)
nEZ

Assume also that the boundary conditions determine a one-dimensional space of solu-
tions depending only on w? (such as decay at infinite, u(r, = co) = 0, or a solid wall
u'(r1) = 0, etc.; most real problems are in this class). We may construct a generator
of the space of solutions as follows:

Let o = Ajvy + Agvg, A1, Ay real; B = dmAqvy, with 6 = 0 forr < 1 or § =1 for
r > 1. Then

P = A.(l,n,l) (oz—l—iﬁ)e”—l—)\(—l n,l)(a—18)e ",

V= = AMLn ) (o +iF) et — =\~ 1,n,z)(a'—m')e—”.
F F
Since p, is real, P(—w,—n,—[) = P(w,n,l), so the same happens for the coefficient
A. Also dFE/dt is real, so it is enough to take the real part of the terms in (3). The
real part of the non-oscillatory terms (that is, the sums in (3) not affected by e*! o
e~?'!: the time mean of these is zero and hence they are not relevant in the net energy

increase) is therefore

(|)‘( 17n7l)|2 + |)‘(17n7l)|2) (0/6 - O‘ﬁ/)
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for a fixed mode n. The wronskian determinant o'(3 — a3’ vanishes for r < 1, and
satisfies W' = (F'/F —1/r)W; hence W = A F'/r for r > 1, A a constant. One easily

gets
r r 1 9

A= I Ao (vhoy — vau)) = I Ao (whvy — wyv] + ] vi),
which as shown before, is positive at » = 1. (Recall that ' = r — 1, wjv; — wyv] =
a(r—=1)4+0(r—-12a>0,vi=0(r—1)")

Hence for a set X bounded for r = a and r = b, dF//dt is a continuous function of
(a,b) whenever both are less than or greater than 1; however, if a« < 1,b > 1, dF/dt

jumps by a fixed amount. We have proved

Theorem 1 FEnergy absorption due to alfvenic resonance takes place at the singular
set.

Notice that the fact that 5 # 0 (that is, that an imaginary part occurs at the
solution after the singularity r = 1) is essential for the existence of this phenomenon.
Any solution not taking this term in consideration is physically erroneous. This would
happen if one applies directly any of a number of numerical methods of integration
which tolerate the singular point, but do not get the solution analytic in w, as we will
show next.

3 NUMERICAL RESULTS.

The integration of the initial value problem in a given interval (in our case r €
[0.5,1.5] ) is delicate because of the singularity ar r = 1. If however, one takes
r=a+ie, x €[0.5,1.5], ¢ > 0, not only the singularity dissapears, but what we
obtain is the correct solution in the limit ¢ = 0. This has been done in equation (2)
for initial values uv(0.5) = 1, ¥/(0.5) = 1, n = 1,2, and ¢ = 1071,107%,1073 (see
figure 1). Behaviour for n = 2 is similar, as shown in figure 2. Observe that the

Figure 1: Left: real part of the solutions, for n = 1; right: imaginary part of
the solutions, for n = 1.

behaviour of the imaginary part is as predicted: zero up to the singularity r = 1, and
then a nontrivial function. By contrast, direct integration of (1) with ¢ = 0, even if
the algorithm somewhat surpasses the critical point at r = 1, will never generate an



Figure 2: Left: real part of the solutions, for n = 2; right: imaginary part of
the solutions, for n = 2.

imaginary part for a real equation with real initial value. We have checked that for
¢ = 0; the real part is correctly obtained but the imaginary part of u is always zero,
as one would expect.
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Figure 3: Boundary value problems for n = 2; real and imaginary parts of the
solution.

As for the boundary problem, the same method may be used. The regular bound-
ary value problems obtained by considering r = = 4+ ie, @ € [0.5,1.5], with the
conditions u(0.5) = 0 = u(1.5) and ¢ = 107',1072,107%, show the convergence of
the solutions to the correct physical solution. For n = 2, we have the results of the
figure 3.

These graphics have been obtained by using the shooting method with Mathe-
matica, which allows a high degree of interactivity and is specially good at dealing
with singularities. If we execute this method setting directly ¢ = 0, we still get an
answer, but a completely wrong one (fig. 4).

In general, the behaviour of this integrator for ¢ = 0 is erratic. For n = 1, one
gets the correct answer for some try values of «/(0.5) and a wrong one for others. For
n = 2 it is always false.

Finally, to emphasize the fact that one cannot choose the value of v at r = 1
arbitrarily and then solve the boundary problem at both intervals [0.5,1], [1,1.5],
we have set u(1) = 10 and found the solutions for n = 2 for a slightly attenuated
frequency w = 1 +0.1¢ (fig. 5). The solutions are obviously not differentiable. This
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Figure 4: The wrong answer for ¢ = 0.

shows that the problem should not be treated as an equation with a singular boundary;

one cannot impose arbitrary Dirichlet conditions at » = 1. Those are determined by

the original problem in a complex variable setting.
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Figure 5: The solutions for u(1) = 10; real and imaginary part.
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