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ABSTRACT: The magnetohydrodynamics equations in a cylinder linearized around
an equilibrium state with vertical magnetic �eld reduce to a single singular second
order partial di�erential equation where the time frequency enters as a parameter.
Although there could exist whole families of solutions depending on arbitrary values
at the singularity [1] , only one of them is physically correct. We analyze theoretically
and numerically the problem and the physical consequences of our results.
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1 THE SETTING OF THE PROBLEM.

Let a stationary plasma �ll a hollow cylinder r0 < r < r1, and assume that its density
� and magnetic �eld B = (0; 0; B) depend only on the radius r, and that it satis�es
the polytropic state equation p = A�
. For a �xed Fourier mode l in z, let u be the
Fourier-Laplace transform (t ! !) of a small perturbation p� of the total (kinetic
plus magnetic) pressure. If the values of the perturbed velocity and �eld are zero at
t = 0, u satis�es
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The points where the local Alfv�en frequency !A = � l B=
p
� matches the time fre-

quency ! are singular and very important in the study of magnetic oscillations,
[2, 3, 4]. To simplify the study of this singularity, we will consider only the prin-
cipal part of the di�erential operator and set the second term of (1) to zero; let
F = !2�� l2B2. After a Fourier transform �! n in the angle variable, (1) becomes

u00 +

 
1

r
� F 0(r)

F (r)

!
u0 � n2

r2
u = 0 : (2)



At any simple zero r0 of F , F 0=F behaves as 1=(r � r0). For further notational sim-
pli�cation, and without a�ecting the properties of the equation we will take l2B2 = 1
and �(r) = r; for !2 = 1, (2) becomes
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which we recognize as an hypergeometric equation. Its classical theory [5, 6] al-
lows us, after a cumbersome but essentially straightforward calculation, to write two
independent solutions in B(1; 1) as
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where (x)k = �(x+k)=�(x), �(n) = n+3=2+
q
n2 + 1=4, �(n) = n+3=2�

q
n2 + 1=4,

and 	 is the logarithmic derivative of the � function.

2 MAIN RESULTS.

We see that v2(r) = w2(r) + log(1 � r)v1(r), with v1 and w2 real functions. Also
notice that the wronskian determinant w02v1 � w2v

0

1 behaves as a(r � 1) +O (r � 1)2

near 1, with a = 4=(�(n) � 2)2 (�(n) � 2)2 > 0. These function are C1 and, except
for the term log(1 � r), real valued in [r0; r1]. In the general case we would have
log(r(!)� r), where r(!) is the (complex) zero of F for ! near �1. Hence, for � > 0,
log(1 � (1 + �)) = log(1� (1 � �)) + i ��, where � = �1, according to which branch
of the logarithm is chosen. Let us study the correct determination of this imaginary
part.

Lemma 1 Let !0 = �1. Then � is the sign of !0=F 0(1) (F 0(1) = 1 in our case).

Proof. What we denote by u is in fact the Fourier-Laplace transform
Z
1

0

ei!tp�(t;x) dt;

hence the solution of (1) for real ! should be the limit of (damped) solutions for
! + i ", " # 0. Let !(r) be the (complex) frequency which makes F (!(r); r) = 0 near
(!0 = �1; r = 1). Then
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!0 + F 0 = 0 ;

that is, 2!(r)�(r)!0(r) + F 0(r) = 0. This implies

!(r) � !(1) = � F 0(!(1); 1)
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thus, if r(!) is the (complex) zero of F (!; r(!)) near (! = !0; r = 1),

r(!)� r(!0) = r(!)� 1 = � 2!0�(1)

F 0(!0; 1)
(! � !0) + O (! � !0)

2 :

Hence the sign of the imaginary part of r(!0 + i ") is the sign of �!0=F 0(1). When
positive, r(!) lies in the lower half plane and when r goes from 1�� to 1+�, r(!)�r
goes from r(!) � 1 + � to r(!) � 1 � � in the lower half plane, so that its argument
changes from 0 to ��; otherwise, from 0 to �. Always � = sgn(!0=F 0(1)). 2

How this fact relates to energy absorption? The increase of energy in X is given
by

dE

dt
= �

Z
@X

p� v � n d�
(where n denotes the outer normal). It may be shown that the Fourier transforms P
and V of p� and v�n satisfy V = (i !=F )P 0. Since we are dealing with a single resonant
sheet, assume that p� has only the Fourier modes �l in z (so that F = !2� � l2B2

is �xed in the problem). We will study the integral above for a cylindrical surface
r = a. As we know, under fairly general conditions, and with a somewhat relaxed
notation,Z
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Hence the output of energy through r = a is
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Assume also that the boundary conditions determine a one-dimensional space of solu-
tions depending only on !2 (such as decay at in�nite, u(r2 =1) = 0, or a solid wall
u0(r1) = 0, etc.; most real problems are in this class). We may construct a generator
of the space of solutions as follows:

Let � = �1v1 + �2v2, �1; �2 real; � = ���2v1, with � = 0 for r < 1 or � = 1 for
r � 1. Then

P = �(1; n; l) (� + i �) ei t + �(�1; n; l) (�� i �) e�i t ;

V =
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F
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Since p� is real, P (�!;�n;�l) = P (!; n; l), so the same happens for the coe�cient
�. Also dE=dt is real, so it is enough to take the real part of the terms in (3). The
real part of the non-oscillatory terms (that is, the sums in (3) not a�ected by e2i t or
e�2i t; the time mean of these is zero and hence they are not relevant in the net energy
increase) is therefore
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for a �xed mode n. The wronskian determinant �0� � ��0 vanishes for r < 1, and
satis�es W 0 = (F 0=F �1=r)W ; henceW = AF=r for r � 1, A a constant. One easily
gets
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which as shown before, is positive at r = 1. (Recall that F = r � 1, w02v1 � w2v
0

1 =
a(r � 1) + O (r � 1)2, a > 0, v21 = O(r � 1)4.)

Hence for a set X bounded for r = a and r = b, dE=dt is a continuous function of
(a; b) whenever both are less than or greater than 1; however, if a < 1, b > 1, dE=dt
jumps by a �xed amount. We have proved

Theorem 1 Energy absorption due to alfvenic resonance takes place at the singular
set.

Notice that the fact that � 6= 0 (that is, that an imaginary part occurs at the
solution after the singularity r = 1) is essential for the existence of this phenomenon.
Any solution not taking this term in consideration is physically erroneous. This would
happen if one applies directly any of a number of numerical methods of integration
which tolerate the singular point, but do not get the solution analytic in !, as we will
show next.

3 NUMERICAL RESULTS.

The integration of the initial value problem in a given interval (in our case r 2
[0:5; 1:5] ) is delicate because of the singularity ar r = 1. If however, one takes
r = x + i ", x 2 [0:5; 1:5], " > 0, not only the singularity dissapears, but what we
obtain is the correct solution in the limit " = 0. This has been done in equation (2)
for initial values u(0:5) = 1, u0(0:5) = 1, n = 1; 2 , and " = 10�1; 10�2; 10�3 (see
�gure 1). Behaviour for n = 2 is similar, as shown in �gure 2. Observe that the
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Figure 1: Left: real part of the solutions, for n = 1; right: imaginary part of
the solutions, for n = 1.

behaviour of the imaginary part is as predicted: zero up to the singularity r = 1, and
then a nontrivial function. By contrast, direct integration of (1) with " = 0, even if
the algorithm somewhat surpasses the critical point at r = 1, will never generate an
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Figure 2: Left: real part of the solutions, for n = 2; right: imaginary part of
the solutions, for n = 2.

imaginary part for a real equation with real initial value. We have checked that for
" = 0; the real part is correctly obtained but the imaginary part of u is always zero,
as one would expect.
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Figure 3: Boundary value problems for n = 2; real and imaginary parts of the
solution.

As for the boundary problem, the same method may be used. The regular bound-
ary value problems obtained by considering r = x + i ", x 2 [0:5; 1:5], with the
conditions u(0:5) = 0 = u(1:5) and " = 10�1; 10�2; 10�3, show the convergence of
the solutions to the correct physical solution. For n = 2, we have the results of the
�gure 3.

These graphics have been obtained by using the shooting method with Mathe-
matica, which allows a high degree of interactivity and is specially good at dealing
with singularities. If we execute this method setting directly " = 0, we still get an
answer, but a completely wrong one (�g. 4).

In general, the behaviour of this integrator for " = 0 is erratic. For n = 1, one
gets the correct answer for some try values of u0(0:5) and a wrong one for others. For
n = 2 it is always false.

Finally, to emphasize the fact that one cannot choose the value of u at r = 1
arbitrarily and then solve the boundary problem at both intervals [0:5; 1], [1; 1:5],
we have set u(1) = 10 and found the solutions for n = 2 for a slightly attenuated
frequency ! = 1 + 0:1 i (�g. 5). The solutions are obviously not di�erentiable. This
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Figure 4: The wrong answer for " = 0.

shows that the problem should not be treated as an equation with a singular boundary;
one cannot impose arbitrary Dirichlet conditions at r = 1. Those are determined by
the original problem in a complex variable setting.
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Figure 5: The solutions for u(1) = 10; real and imaginary part.
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