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Abstract

A new family of p-stage methods for the numerical integration of some scalar equations and
systems of ODEs is proposed. These methods can be seen as a generalization of the explicit
p-stage Runge-Kutta ones, while providing better order and stability results. We will show in
this first part that, at the cost of losing linearity in the formulas, it is possible to obtain explicit
A-stable and L-stable methods for the numerical integration of scalar autonomous ODEs. Scalar
autonomous ODEs are of very little interest in current applications. However, be begin studying
this kind of problems because most of the work can be easily extended to a more general
situation. Tn fact, we will show in a second part (entitled ‘The separated system case‘), that it is
possible to generalize our methods so that they can be applied to some non-autonomous scalar
ODEs and systems. We will obtain linearly implicit L-stable methods which do not require
Jacobian evaluations. In both parts, some numerical examples are discussed in order to show

the good performance of the new schemes.
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1 Introduction.

During the last decades there has been a considerable amount of research on methods for numerical
integration of stiff systems of ODEs, usually looking for better stability properties. Nearly all such
methods are implicit in character.

The most widely used algorithms are those based on linear multistep formulas like the BDF
methods (see e.g. [1]), because they are very efficient for general stiff problems. However, from a
result of Dahlquist it is known that no linear multistep method of order greater than two can be
A-stable [2], and so these formulas are not suited to some stiff problems (for example, those with
Jacobians whose eigenvalues have large imaginary parts).

Implicit Runge-Kutta formulas [3, 4] have been widely used because of their excellent stability
properties (such as A-stability, L-stability and B-stability), but the need for solving nonlinear
algebraic equations at each step makes these formulas generally too costly when considering some
huge systems of ODEs.

To reduce the amount of computational effort required to solve the nonlinear equations (by
Newton-type iterations) when integrating with a fully implicit Runge-Kutta method, some classes
of Runge-Kutta formulas have been developed. With the class of diagonally implicit Runge-Kutta
(DIRK) methods (also called semi-implicit or semi-explicit Runge-Kutta methods) the algebraic
cost of the LU factorization is reduced. By considering the class of singly diagonally implicit Runge-
Kutta (SDIRK) methods and also the class of singly implicit Runge-Kutta (SIRK) methods, it is
possible to reduce even more the algebraic cost of the LU factorization (see e.g. [5, 6, 3] for more
details).

Many other attempts have been made in order to reduce the computation cost per step by
considering linearly implicit methods, in this way eliminating the need for solving nonlinear systems
which, as pointed before, usually are solved by Newton-type iteration (and hence require additional
function evaluations for every iteration at every step). Such formulas have the computational
advantage that it is necessary to solve only linear systems of algebraic equations at each step.

Among the many different RK-like methods of this type we have the Rosenbrock methods [7]
and the ROW-methods (also called Rosenbrock-Wanner methods and modified Rosenbrock meth-
ods) [8, 9, 10]. These formulas, however, require the exact Jacobian at every step. Therefore
the computations are costly when the Jacobian matrix is expensive to evaluate. For this reason,

extensions of Rosenbrock methods have been considered in which the exact Jacobian is fixed for



some number of steps so that the computation cost is reduced (see e.g. [11, 12, 13, 14]). Moreover,
Rosenbrock-type methods in which the exact Jacobian is no longer needed have been considered.
The so called W-methods [15], the MROW-methods [16] and the generalized Runge-Kutta methods
[17] (see also [18]) fall into this class. For an excellent survey of some of these methods the reader
is referred to [5].

In our recent papers [19, 20], examples are shown of explicit and linearly implicit two-stage
methods of order three for the numerical integration of scalar autonomous ODEs, which do not
require Jacobian evaluations, some of them being as well A-stable and L-stable. Some compar-
isons with Runge-Kutta methods as well as numerical experiments are also reported. In [21] we
describe how to construct from a given function R a one-parameter family of explicit (or linearly
implicit) two-stage methods, having R as the associated stability function, and illustrate this fact
by obtaining a two-stage third order formula whose associated stability function is given by e*.

Our first aim in the present paper is to introduce the general form of the new explicit p-
stage methods for the numerical integration of scalar autonomous ODEs. We begin studying these
methods for scalar problems because, as we will see in a second part, most of the work can be
easily extended in order to integrate separated systems of ODEs. These methods can be seen as
a generalization of the explicit Runge-Kutta methods providing better order and stability results
with the same number of stages. In fact, from Butcher’s theory we know that an p-stage explicit
Runge-Kutta method cannot have order greater than p. Moreover, the stability function of such
methods is a polynomial, and so none of them is A-stable. We will show that it is possible to obtain
A-stable explicit formulas for scalar autonomous problems of order three and five, with only two
and three stages respectively, from our class of methods. By a further generalization of our schemes,
we will show in the second part that it is possible to obtain A-stable linearly implicit formulas for
some non-autonomous scalar ODEs and systems, which do not require Jacobian evaluations. For
example, in [22] we present a two stage third order method for separated systems of ODEs being
L-stable, as well as preliminary results using our method to integrate systems that arise when
solving some nonlinear parabolic PDEs by the method of lines approach.

Finally we illustrate the efficiency of those schemes by carrying out some numerical experiments.



2 The new family of methods.

In this first part, we will restrict our attention to the scalar autonomous initial value problem

Y(2) = F(y(@)) . ylzo) = vo. 1)

For this problem, let us consider the family of explicit p-stage methods defined by

Yn+1 :yn‘|’th+1(k17k27"'7kp)7 (2)
where the stages are given by
ky = f(yn + hEF2(k1))
ks = f(yn + hE3(k1, ko)) (3)

kp = f(yn —I_ th(klv k?v .. '7kp—1)) 9
and for each 7 with 2 <1 < p+ 1, F; is any homogeneous function of degree one, that is
Filazy,ang, . ..,o0x 1) =aFj(x,22,...,2,-1), (4)

holds for each o € IR and (x4, z2,...,2,-1) in a subset of R,

The family of methods we have just defined, may be shown to be a generalization of the explicit
p-stage Runge-Kutta methods for problem (1). In fact, taking F;(z1, z2,...,2i—1) = @inx1+ainx2+
s agoimy (2<i<p)in (3) and Foqq (21, 29,...,2p) = byay + bazg + -+ -+ byz, in (2), we get
all the explicit p-stage Runge-Kutta formulas as a subfamily of our class.

Moreover, our methods can be seen as generalized explicit Runge-Kutta methods whose co-
efficients depend on the stages and are no longer constants. To show this it is enough to note
that from the fact that F; is an homogeneous function of degree one, by using Euler’s theorem for

homogeneous functions, we obtain

i—1
or;
B(khk?w"vki—l) = Z Dz

i=1 9%

(k17k27"'7ki—1)kj7 QSZSP‘FL



from which it is clearly enough to take the Butcher array

a21

az; @32

pr Gp2 -+ lpp—1

by by -+ by b,

where now the parameters a;; and b; are given in terms of the stages k; and the functions F; through

the relations

OF;

i = ki ke, ki), 1<j<i<p,
aij 896]4(1 2 1) Sy<tsp
OF, 11 .
bi = %;i(klvk%"'vkp)v 1§Z§p

Our new p-stage methods are difficult to study because of the nonlinearities that can arise from the
homogeneous functions in (4). For reasons that will be clear later when studying the consistency,
order and linear stability properties of the schemes, we will give a better formulation of our methods
in order to simplify our analysis.

Note at this point that the quantities given by
=F(1,1,...,1), 2<i<p+1, (5)

play a similar role to those associated with the classical Runge-Kutta methods. In fact, we have
that the stages k; can be seen as approximations to y'(z, + ¢;h). Now we give the promised better

formulation of the methods.

3 A useful formulation.

We introduce the terms

izke ki, (6)
S, = =7 — 1, StTSp,
iy i P

where the stages k; are given by (3). From considerations that will be clear later, we take s; = 0

when k4 = 0 in (6).

It is a simple task to show that s; = O(h), and we will exploit this property in order to
simplify our study. Moreover, the terms s; can be seen as approximations to ¢;hf,(y,). In fact
s; = cihfy(ys) + O(h?) (here we assume that f has a sufficient number of bounded derivatives),

and so we can obtain approximations to the Jacobian f,(y,) by taking s;/(¢;h) (when ¢; # 0).



It is easy to show recursively that the stages k; (with 2 < i < p) can be obtained from ky and
s; with 2 < j < i —1 (see e.g. (8) below). Therefore, in terms of k; and s;, any method of the

preceding family takes the form

Yn+1 = Yn + hlep—I—l(527 S350y Sp) ) (7)

where the s; are given by (6) in terms of the stages

kl - f(yn)
ky = f(yn + hk1G2)
ks = f(yn + hk1G3(s2)) (8)

kp = f(yn—I_hlep(S?vSSv-"vSp—l))v

and the functions GG; can be obtained from the homogeneous functions F; through the relations

1 k ki
Gi(827837"'78i—1) = k‘_lﬂ(k‘hk?w'wki—l) = E (17k_j7"'7 k‘ll)
= B(171+827"'71+8i—1)7 2§Z§p+17 (9)

Note that when 7 = 2 we have that Gy = (1/ky)Fy(ky) = F2(1) = ¢ holds from (5). From the
above relations, we can write any method (2) in the form given in (7).
Reciprocally, it is also possible to obtain from a given method in terms of ky and s; the associated

expression in terms of the k; by using the relations

E(k17"'7ki—1):lei(827"'7Si—1) :lez (%—17...7k2_1 —1) s 2§’L§p—|—1
1 1

For i = 2 we have Fy (k1) = k1Gs.

4 Consistency and order of the methods.

In what follows we will assume that f : IR — IR is Lipschitz in IR, i. e. there exists a Lipschitz

constant I such that
|f(y) = fFy") < Lly -y,

for every y, y* € IR. With the previous assumptions it is well know that for any yg € IR, there exists
a unique solution y(z) of problem (1) (throughout any interval [zq, b]), where y(z) is continuous

and differentiable.



We will investigate the consistency of any p-stage method given by (7). When doing so, we
will assume the existence (and continuity) of y'(z) in [20, ], but not necessarily that of higher
derivatives.

Using Henrici’s notation for one step methods, our methods can be expressed as y,+1 =
Yn + h (2, yn, h), with the increment function ® (not depending explicitly on 2 because (1)

is autonomous) given by
Oz, y, h) = k1Gpr1(52, 53, -1 Sp) s

through (6-9) (with y in place of y,,).
As is usual with other one-step methods, we define the local truncation error T'(z,h) of any

formula of our family to be
T(xz,h)=y(x+h) —y(z) — hk1Gpp1(S2,83,...,8y), « € [x0,b], (10)

where h > 0, the stages k; are given by (8) with the exact solution of (1) y(z) in place of y,, the
terms s; by (6) and the functions G; through (9).

Definition 1 Method (7) is said to be consistent (with (1) satisfying our previous assumptions) if,
in the limit as h — 0 we have that T'(z,h)/h — 0 uniformly for x € [xo, b].

It is known that consistency is a necessary condition for convergence, and therefore we want to
establish the condition that method (7) must satisfy if we require it to be consistent. In order to

do so, we need the following lemma:

Lemma 1 Suppose that for each j with 2 < j < p+ 1, the functions G; in (9) are continuous in
a neighbourhood W;_s of the point (0,0,...,0) € IR'=2. Let s; (2<i<p) be given through (6) in
terms of the stages k; in (8) with y in place of y,. Then for every ¢ > 0 there exist hy > 0 such
that

|si] < hL(lei|+¢), 2<i<p,

|Gj(827837"'78j—1)| < |Cj|‘|’€7 2§]§p+17

hold for every 0 < h < hy and y € IR.

Recall that as we have pointed out before, ¢; = ;(0,0,...,0). The proof follows from the Lipschitz
character of f, and from the fact that the functions G; are continuous in a neighbourhood W;_,
of the point (0,0,...,0) € IR’72, by a recursive procedure.

From the above lema it is clear why s; = O(h). Now we have



Theorem 1 Method (7) is consistent with (1) (under the above assumptions) iff
Gpp1(0,0,...,0) = cpyy = 1. (11)
Proof. For any given x € [29,b] and h > 0 we get from the mean value theorem that
y(a+h) —y(2) = hy'(ar),

where o, € (x,2 + h). It then follows from (10) that

T(z,h)
h

= y/(al’) - lep—I—l(S?v S350y Sp) 9

Now in the limit as h — 0 we have that y'(a) — y'(2) uniformly for 2 € [z0, b]. From the previous
lemma we easily get that as h — 0, s; — 0 for each ¢ (with 2 < ¢ < p). Finally, from the continuity

of the function G,11, and taking into account that y'(z) = f(y(z)) and k1 = f(y(z)), we get

T(xz, h
lim 7(967 )

h—0

= (1= Gpp1(0,0,...,0)) fy(z)),

from which we obtain the consistency condition (11). ¢
Note at this point that using Henrici’s notation for one step methods, the consistency condition
reads ®(y,0) = f(y). Obviously this consistency condition takes the form (11).

Now we define the consistency of order ¢ in the usual way, that is,

Definition 2 Method (7) is said to be consistent (with the differential equation (1)) of order q, if

q is the largest integer such that there exists N > 0 and hg > 0 with sup |[T(x,h)| < N7t for
ro<z<b

all h € (07 ho]

If all the partial derivatives of f(y) up to order ¢ exist (and are continuous), then consistency
follows from the consistency of order ¢ > 1.

It can be seen that any consistent method of order ¢ is convergent of order ¢, but the proof
is more complicated that for other one step methods like the Runge-Kutta ones and so we give
not the proof here. The main difficulty arises when proving that the increment function ®(y, h) =
k1Gyy1(s2, 83,...,5,) satisfies a Lipschitz condition in y for h small enough. Even though this
property is nearly automatic for most of the one-step methods from the Lipschitz condition that

satisfies function f, for our methods it is not as easy because of their nonlinear structure.



5 Methods of polynomial type.

Now, for every fixed p, we restrict our attention to the family of methods given by (2-3), where
now all the F; (2 < i < p+ 1) are assumed to be homogeneous functions (of degree one) of the

special form

7y 2o \I2 [ pa\ I3 T Jim1
B($17$27 .. .7$i_1) = Z Aj2j3...]‘i_1 T (-2) ( 3) o ( 1) 3 (12)

Jotiatetii—1=0 o o o
with all r; being nonnegative integers.

The above family of methods, still contains all explicit p-stage Runge-Kutta methods. In fact,
taking r; = 1 in (12) we get from (2) and (3) all explicit p-stage Runge-Kutta methods.

In what follows, we will restrict our attention to the above family of methods because in terms
of s; the associated functions G; are of polynomial type. This greatly simplifies the study of the
order conditions. Moreover, order conditions for the general methods can be easily obtained from
the order conditions for methods of polynomial type, by considering the Taylor expansion of the
functions G; in terms of the s;.

From now on, we will assume that all quantities ¢; = Fi(1,1,...,1) in (12) are different from
zero. Even though we lose a bit of generality with this assumption, we obtain many advantages
that will be clear later. In fact, it can be seen that for a given number of stages p (at least for
p=2,3,4), the highest order is attained only when all ¢; # 0, and so, all interesting methods (from
an order point of view) are considered.

With the above assumption we now change our definition of the s; in (6), hoping that this will
not confuse the reader. We define

ki k
- C; kl

s; 2<i<p, (13)

with the stages k; given by (3). Now it is easy to see that s; = hf,(y,.) + O(h?), and this will be
useful later when looking for methods with good linear stability properties, since it simplifies the
study of the order conditions.

In terms of ky and s;, the preceding method takes the form (7-8), but now the functions G; are

given in terms of the new s; and the functions F; in (12) through the relations

1 k ki
Gi(827837"'78i—1) = k_lﬂ(k‘hk?w'wki—l)zﬂ(17k_j7"'7 k‘ll)
= Fi(l,14cgs9,...,14cimysic1), 2<i<p+1. (14)



It can be seen that the functions G; take the form
i
Gi(z2,23, ..., Zic1) = ¢ (1 + Z Ay iaeiiy z%é z:]f . -zfi‘ll) . (15)
J2tjatAgi—1=1
Note that for this special class of methods, as we have pointed out before, all G; are polynomial
functions of the s;. Therefore, in what follows we will refer to this formulas as methods of polynomial
type.
Now we study the attainable order, in terms of the number of stages, of the methods given
by (7), (8), (13) and (15). From now on, we will suppose that f is smooth enough in order that
all the derivatives which occur when considering the Taylor expansion of the local truncation error

make sense.

6 Two-stage methods of polynomial type. Attainable order.

To show that we can obtain explicit two-stage methods of polynomial type from (7-8) (together
with (13) and (15)) of order three, it is enough to consider the Taylor expansion of the associated
local truncation error. Note that when doing so, only the parameters ¢y, ¢3 and a; with 1 <7 <2
will appear in the order conditions, that is, it suffices to takein (15) r3 = 2 (the other parameters can
be arbitrarily chosen). This easily follows from the fact that s, = O(h), and therefore s5 = O(h*)

for any given k € IN. We obtain the following order conditions

cs = 1,
czap = 1/2,
cseqa; = 1/3,
csay = 1/6,

from which the general form of a third order two-stage method of polynomial type is given by

Ynt+1 = Yn + hk1G5(s2)

where kq, ko and sy are given by

2 3(ky — k
ky = f(yn) k2:f<yn+§hk1) ; 82:(22711)7 (16)
and G5 takes the form
1 1 "2 .
Ga(sg) = 1+ 552 + 63% + Z ;S5 (17)
=3

10



that is, it is enough to take c3 = 1 (consistency condition), ¢ = 2/3, ay = 1/2 and ay = 1/6.
Parameters a; with ¢ > 3 can be arbitrarily chosen.

The additional order conditions (now with r3 =3 in (15)) for order four are given by

cacaa; = 1/4, (18)
C3Co09 = 1/6 s (19)
c3d3 = 1/247 (20)

and it is easy to check that no two-stage method of polynomial type has order greater than three
(conditions (18) and (19) cannot be satisfied). However, condition (20) can be satisfied by taking
a3 = 1/24, obtaining in this way third order methods that minimize the principal part of the local
truncation error. Note at this point that the other terms of the principal part of the local truncation

error (those associated with conditions (18) and (19)) are the same for any method of order three.

7 Three-stage methods of polynomial type. Attainable order.

When considering three-stage methods of polynomial type from (7-8) together with (13) and (15),
it is possible to get a family of fifth order formulas, depending on many free parameters. As in the
two-stage case, only some of this parameters will appear in the order conditions, due to the fact that
both sy and sz are O(h). However, the resulting order conditions are still too cumbersome; hence we
define a new term §3 = s3— s9 to make our study easier. Note that from our previous considerations

it is clear that 53 = O(h?). Now we can describe any three-stage method of polynomial type by
Yn41 = Yn + hk1Ga(s2, 53)
with 33 = s3 — s, and where sy and s3 are given through (13) in terms of the stages &; (1 <7 < 3)
kv = f(yn), ko= flyn+ hk1G3), ks = f(y, + hk1Gs(s2)) .
Now functions (G5, (73 and G4 are given by
Gy = ¢,

ra .
Gs(s2) = «¢3 (1—|—Zais§) )
=1

74 o
Ga(s2,83) = ¢4 (1‘|' Z aijsé%), (21)

i+27=1

11



and it is easily seen when looking for formulas of order five, that it is enough to consider the
parameters in (21) with r3 = 3 and 74 = 4. This means that the order conditions (for order five)
are completely determined in terms of the parameters ¢; (2 < i < 4), a; (1 < i < 3), and a;;
(1 < i+ 25 < 4). This follows from the fact that sy = O(h) and 53 = O(h?).

Now, any three-stage methods of polynomial type must satisfy the following order conditions

in order to be of order five

G o= 1, (22)

care = 1/2, (23)

cq (ca(arp — ao1) + cza1) = 1/3, (24)

cq (ag0 + arao1) = 1/6, (25)

e (a0 — aor) + Aag ) = 1/4, (26)

cq (c2(2a30 — a1y + araor) + ca(arr + 2a1a01)) = 1/3, (27)

cq (azo + aran + azagr) = 1/24, (28)

c4 (cg’(alo —aop1) + c3a01) = 1/5, (29)

Cq (02(2(120 — ayy 4 ayagy) + c3(ay; + 3ayagy) ) = 7/20, (30)

4 (Cg(azo — ay1 + ao2) + cacs(ars — 2a02 + 2a1a01) + 03002) = 2/15, (31)
cq (c2(3azo — azr + 2a1 (a1 — apz) + 2aza01)

+e3(az + 2a1(arn + ag2) + (af + 2@2)001)) = 11/60, (32)

c4 (040 + ajag + ajagy + agar; + 613@01) = 1/120. (33)

It is easy to check that the above system has many solutions. In fact, we get two doubly infinite
families of solutions, taking a, and a3 as free parameters. The remaining coefficients can be
computed as follows:

Step 1 Obviously, we have ¢4 from (22). Coefficients a19, ao1, ¢z and cs, can be chosen such
that (23), (24), (26) and (29) are satisfied. We get a pair of solutions in this way.

Step 2 Now, for each solution of the previous step, we can obtain ay, agg, a1y and agg, by solving
the linear system given by (25), (27), (30) and (31).

Step 3 Finally, we obtain a4o, aso and az; by solving the remaining linear system (28), (32)

and (33) (in terms of the parameters ay and as).

12



The result is

_6FV6 6+6 _ —3+2V6 1 9++6

Co = C3 = y oa=1, a 6110:57 ap1 =

10 10 5 ' 36
020:3:':\/6 011:73:&2\/6 002:71:&4\/6 030:7_9:':\/6(12
12 7 72 72 36 '
— (34 1lag) + (1 — 4a)V6 —3 (3 — 10ag + 30a3) + (3 + 20ay — 10a3)\/6
a9l = 24 s aqo = 360 . (34)

The other parameters may be arbitrarily chosen.
For order six we must add to (22-33) the following conditions (now it is enough to take r5 =4
and 74 =5 in (21))
c4 (C%(alo —ao1) + cgam) = 1/6, (35)
c4 (03(2(120 — ayy 4 ayagy) + 3(ay; + 4a1a01)) = 11/30, (36)
cyq (20:2))(@20 — a1y 4 agy) 4 c3ez(ar — 2a0; + 2ayag;)

t+eacd(an — 2002 + Baraor) + 2cay) = 1/4,  (37)

cyq (03(3030 — a1 + 2a1(a11 — ao2) + 2aza01)
—|—C§(a21 —|— ay (3(111 —|— 2@02) —|— 3(@% —|— ag)am)) = 4/15 s (38)

cyq (03(3030 — 2az1 + a1z + ay (@11 — 2ag2) + azaor)

+2¢3¢3(az1 — arz + a1 (2a11 — aoz) + (ai + 2a2)aor) + c3(arz + 4611@02)) = 17/90, (39)

c4 (02(4040 — az1 4 a1 (3ag1 — 2a12) + 2(a? — az)agy + 3azar; + 3azao;)
tea(az + 2(ar(ag + ara) + (2a7 + az)aoy + (a1ay + az)agr) + (a + 2@2)011)) = 13/180, (40)
cq (aso + a1(asy + ara12 + 2aza02) + agazy + azary + agap1) = 1/720.  (41)

Now from (34) and conditions (35-41), it is not difficult to see that order six cannot be attained
with only three stages. In fact, conditions (35-37) cannot be satisfied, and the coefficients of the
associated terms in the principal part of the local truncation error are the same for any method of

order five. However, conditions (38-41) can be satisfied by taking

o 519 4 22616 o ~103 4+ 42V/6 o — =3(1194 660a3) & 5 (25 — 144a3)v/6
o 300 b g4 M 4320 ’
(22597 4 2400a3 — 7200a4) F 8 (1143 — 200a3 4 100a4)v/6
50 = 28300 ’ (42)

obtaining in this way three-stage methods of order five that minimize the principal part of the local

truncation error. Note that now asg, ag; and a4g are given in (34) by

221 F 1016 —~123 F 226 (59 — 180a3) F 2 (9 + 10a3)\/6
= a = a =
720 7 1440 % 720 ’

a30 (43)

13



8 Methods of rational type.

In the last three sections we have only considered methods of polynomial type. Now we will
consider methods of rational type, that is, methods given by (2-3), where now all the F; with
2 < i < p+1 are supposed to be homogeneous functions (of degree one) of rational type. More
precisely, we will consider functions F; given in terms of the quotient of two homogeneous polyno-
mials Ni(wl, Ty ..., 2xi—1) and f)i(xl, T, ...,x;—1) with degrees r; + 1 and r; respectively, for some

nonnegative integer r;, that is

2: L g g2 di1

N N]1]2"']i—1$1 D) Tiq

N1, o, 1) ket i =il

Fier o aio) = = - e —
(@1, 22,0, 1) E Dy ay ooy

Jtiatetii—1=ry
It is not difficult to see that the new family of methods contains all the previous methods of
polynomial type as a subfamily. Now, assuming as before that all quantities ¢; are different from
zero, we get from (13) and relation (14) that, in terms of k; and s;, any method takes the form (7-8),

with the functions G; given by

nf ,
1+ Z nj2]3"']i—12%22§3 e Zz]l—_ll
Gi(z2, 23y« oy 2im1) = ¢ ]2+]3+';:_]i_1:1 (45)
% . . .
1+ Z dj2]3"'ji—12%2 Z:]))S e Zz]l—_ll

Jetizt.tji-1=1
Moreover, n and d¥ can be obtained from the functions F; (in (44)) of the associated method, by

means of

nj = max{j2 +Ja+ ...+ Jio1 / le]é"']i—l 7£ 0}

dif = max{jo+js+...+ji=1 / Djjpji_, 70},

and therefore, are always lower or equal than r; + 1 and r; respectively.

Now it is a simple task to obtain the order conditions for the rational methods, from the order
conditions for the methods of polynomial type. All we need is to consider the Taylor’s expansion of
the functions G;(sg,...,s,_1) in (45) (as functions of the s; with 2 < j < i —1), and then compare
with the associated expansion of a method of polynomial type with the same number of stages. To
show this, we will obtain the order conditions for the two and three-stage methods of rational type
from the order conditions of the corresponding methods of polynomial type. Note at this point

that it is also possible to obtain the order conditions for general methods (that is, for arbitrarily

14



given ;) in the same way, because only expansions of the G in terms of the s; are involved.
However, in what follows we will consider only rational functions G; because this suffices for our
stability purposes.

9 Two-stage methods of rational type.

To obtain all the explicit two-stage methods (of rational type) of order three, it suffices to note

that from (16) and (17) we have that G = ¢ = 2/3 and also
14 Z [
=1

G3(82) = C3 d;f
14+ Z disé
=1

1 1
=1+ 35+ 255+ 0(s3) (46)

must hold. Obviously it is enough to consider nf = d% = 2in (46), obtaining the following conditions

Cy = 2/37
C3 = 17
ny = 1/2—|—d17

If we want to minimize the principal part of the local truncation error, all we need is to take

n% = dj =3 in (46) and expand to higher order the second term, obtaining
The general form of a third order two-stage method of our family is given by

Ynt+1 = Yn + hk1G5(s2)

where kq, ko and sy are given by

(ks — k)

2
kl_f(yn)7 k2—f<yn+§hk1)7 SQ_T7

and G5 takes the form

1+ 2d 1+ 3d; +6d R
1+ 2 182—|— é 25§+Zni52
GS(SQ) = d; 1=3
1 + d182 + dQS% + Z dZSZQ
=3
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Some third order methods with special properties (such as A-stability, L-stability, order four when
applied to linear problems, etc) have been developed in [19, 20], where also some numerical exper-

iments can be found.

10 Three-stage methods of rational type.

Now, following our notations in section 7, we can describe any three-stage method of rational type
by
Ynt1 = Yn + hlk1Ga(s2, 53) | (47)

with 83 = s3 — sz, and where as usually sy and s3 are given through (13) in terms of the stages

kv = f(yn), ko= flyn+ hk1G2), ks= f(yn + hk1G5(s2)) ,
Now the rational functions are given by
G2 = 02,
14 Z 7,85
=1

d3
14+ Z diSZQ
=1
nj
14+ Z ;5555

~ - +27=1
G4(827 53) = (4 : i
d4

1+ Z dijségé
i+25=1

G3(82) = €3

and it is easily seen that when looking for fifth order formulas, it is enough to consider the param-
eters in (48) with n% = d% = 3 and 7% = d5 = 4, that is, the order conditions (for order five) are
completely given in terms of the parameters ¢; (2 < ¢ < 4), n; and d; (1 <@ < 3), and n;; and d;;
(1 <i+42j5 <4). In fact, we can obtain the order conditions for order five, by comparing (as in the
two stage case) the expansions of the functions in (48) with those of the functions in (21) with the
parameters given by (34). The ¢; are given as in (34). The n; are given in terms of ay in (34) and

the free parameters aq, az, dy, dy and ds, through relations

7
ni:Za]‘di—j7 1< <3,
=0
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where obviously we take ag = dy = 1. The terms n;; are given by
g
Niyiy = Z @5y 52 dil—]ﬂé—]é s 1<+ 20 <4
Jk=0
with agg = doo = 1, and where the parameters a;; are those of (21). The d;; can be arbitrarily

chosen.
In order to minimize the principal part of the local truncation error, we take n5 = d5 = 4 and

% = dj =5 in (48), obtaining the additional conditions

4 1k
N4 = E :a]d‘l—j? Niyip = E : a5y 50 dil—jﬂz—jz s 1t 2ip =5,
7=0 J&=0

where a; (1 <@ < 2)and a;; (1 <i+42j <5) are given as in (34), (42) and (43), and the other

parameters are free (as before, we take ag = do = agp = doo = 1).

11 Linear stability properties of the methods.

Now we are going to study the linear stability properties of the methods. When we apply a p-stage

method (7) of our family to the scalar test equation
y =Xy, Mec,

we get,
Ynt1 = R(Z) Yn s

where R(z) is the associated stability function, with z = hA. Moreover, from (6-9) we obtain

recursively
kl = /\yn
sy = 2@,
S3 = ZG3(ZG2)
sp, = z2G,(2Ge,2G3(2GY), ..., 2G_1(2Ge, ..., 2G_2(-+4))), (49)

from which we obtain the following expression for the stability function

R(Z) =1+ ZGp+1(827837 .. .78p)7
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where the s; are given in terms of z by the relations (49).

With our change of notation for the s; in (13), it is not difficult to see that in place of (49) we

have that
ki = Ay,
Sy = Z
s3 = zG3(2)
sp, = 2G,(2,2G3(2),. .., 2G_1(2, ..., 2Gp_2(-+ 1)) (50)

(with z = h A), and so the associated stability function is now given by
R(Z) =1+ ZGp+1(827 83, . .7Sp) ,

in terms of z through relations (50).

12 Three-stage methods being A-stable.

From the above section it is clear that the stability function of a method of polynomial type is
always a polynomial function. Therefore it is not possible to obtain formulas of polynomial type
with good linear stability properties such as A-stability or L-stability. However, it is also clear that
we can obtain methods of rational type whose associated stability function is a rational function.
Moreover, we can obtain A-stable and L-stable methods of rational type, without losing the highest
attainable order for a given number of stages.

Now we will give some three-stage methods of order five being A-stable (or L-stable). For all
such methods we consider the ¢; given as in (34) (with the upper sign), that is

_6—6 _6+V6
Co = 3 C3 = 3
10 10

C4:1.

We will also take d; =0 (¢ > 1) in all cases, obtaining that n; = a;.

For example, taking

-3 3—7V6 77 — 186 153 4+ 29/6 27 — 736
d10:_7 d01:77 d20:77 d11:77 d30:77
5 30 100 360 600
—44 4+ 36 —168 + 976 —34+2V6 -1
d21:77 d40:—7 nn=——, no = —,
120 600 5 10
63 — 376 216 — 79v/6 44 — 36 168 — 97/6
nor = — =~ Noo = —F~~ N1 = ——~~ N3 = —~~
180 300 120 600
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and the other parameters equal to zero, we obtain from (47-48) a method whose associated stability
function is given by the (2,3)-Padé approximation to the exponential function (see e.g. [3]), and

thus being L-stable.

Taking
-2 3—7V6 41— 9v6 431 — 596 1396 — 619/6
d10:_7 d01:77 d20:77 d11:77 d30:—7
3 30 50 600 750
g 1436 -700V6 432353 —178017VG 20769 + 796616
2 3600 p e 180000 p fare 21600 ’
J 127698 — 38147/6 J —7193669 + 2942716/6 3+ 26
= = nG = ——
50 1080000 160 2160000 o 5 ’
—519 + 2266 -1 63 — 376 221 — 796
n2:—7 n10:_7 7101:77 n20:77
300 6 180 300
3474 — 11116 43409 — 180016 20769 — 7966/6
ni = T - A~ n3p = [} nop = [}
5400 18000 21600
1892669 — 781091/6 7193669 — 2942716/6
n = n =
10 540000 r e 2160000 ’

(the other parameters are zero) we get another L-stable method, being optimal with respect to the
local truncation error. The associated stability function is given by the (2,4)-Padé approximation
to the exponential function.

Finally, if we take

-1 3—7V6 36 — 96 1323 — 247/6
d10:_7 d01:77 d20:77 d11:—7
2 30 50 1800
5969 — 25666 1159 — 4861/6 480158 — 199037/6
d30:—7 d21:—7 d40: 9
3000 2400 180000
g —3729 + 14116 135777 — 465286 J _ —1282889 4 5250211/6
e 3600 v TR0 720000 r N0 360000 ’
-3+ 2V6 —519 + 2266 63 — 376
n=——, No = ——— not = ——-~
5 300 180
216 — 79v/6 421 — 1446 45569 — 187911/6
nNow=—>-+~—", M1 =——7—, N3p= s
300 600 18000
3729 — 14116 694953 — 2867926 1282889 — 525021/6
n = n = n =
2 3600 v o 180000 r e 360000 ’

the resulting method is A-stable, with the property of being optimal with respect to the local
truncation error, and with associated stability function given by the (3, 3)-Padé approximation to

the exponential function.
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13 Numerical experiments (the scalar case).

In order to show the behaviour as h — 0 for the methods explained in the last section, we will

consider the following simple problem (taken from [3], pp. 134)

oy Y@ (1 —y(z) 5
y'(z) = o1

()= L4 LoD e
NI=9TVE 736 -

With fixed step size h = 27" for various n = 1,2,3,...,9 over 2" steps, the value of y(1) was

for which the solution is

computed using our methods and two Runge-Kutta methods. The magnitude of the error F for
different h and for each of these methods is shown in Figure 1 in logarithmic scale. The fifth-order
methods of this section with associated stability functions given by the (2,3), (2,4) and (3, 3)-
Padé approximation to the exponential function are marked M23, M24 and M 33 respectively. For
comparison purposes we also include in figure 1 a three stage third-order Runge-Kutta method
(see e.g. [3], pp. 134) marked RK3 and a six stage fifth-order Runge-Kutta method (see e.g. [3],
pp. 202) marked RK5.

On the logarithmic scale used for this figure, the error for each method is represented very
closely by a straight line whose slope equals the order of the method. It can be seen that methods
marked M24 and M33 perform very similarly for this problem, and the slope for the associated
graphs is bigger than 5 (in fact &~ 5.5). It is easy to explain this behaviour by noting that both
methods share the property of being optimal with respect to the local truncation error. It is also
clear that, at the cost of more arithmetical operations, our methods perform better than the Runge-
Kutta method marked RK3 with the same number of stages, and than the Runge-Kutta method

marked RK5 with the same order (and this with less function evaluations).

To show the good behaviour of the methods from a stability point of view, we will also consider

Y () = —by(z)\/c + y2(x), y(0)=a, (51)

depending on the three parameters a, b > 0 and ¢ > 0, for which the exact solution is given by

the following problem

ac

cch(bex)+ a2+ 2sh(bez)

The derivative with respect to y of the function f(y) = —by+\/c? + y? in (51) is
02 _I_ 2y2
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Figure 1: Error versus step size (double log- Figure 2: Numerical solutions for a = 5,10,
arithmic scale) for various methods. b =10, ¢ = 3000, with h = 0.1, z € [0, 1].

and so function f is one-sided Lipschitz continuous (f, < 0) with one-sided Lipschitz constant 0.
Therefore, the true solutions of this non-linear problem show a contractive behaviour. In fact, the
solutions after a transient are virtually identical to the steady-state solution y(z) = 0 (the solution
of (51) when a = 0). We also have from (52) and from our previous comment that f, ~ —bc along
the integration (at least after the transient).

To illustrate the behaviour of the methods marked M23, M24 and M33 when applied to a non-
linear stiff problem, we take b = 10 and ¢ = 3000 in (51), and integrate this problem over z € [0, 1]
with initial conditions @ = 5,10 and fixed step size h = 0.1. Figure 2 shows the good qualitative
behaviour of the numerical solutions we get in this manner. The three fifth-order methods perform
very similarly for this problem. Note that for the range of values of the initial condition ¢ we are
considering, we have f, ~ —30000 along the integration, and therefore the two explicit Runge-
Kutta methods marked RK3 and RK5 give numerical overflow when applied to this problem with
fixed step size h > 0.0001.

The numerical solutions we get from our methods when applied to problem (51) for a wide
range of values of the parameters a, b and ¢ (with bc >> 1 in order to retain the stiffness of the

problem), and fixed step size h = 0.1, show that the qualitative behaviour is not always as good.
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For example, when f,, is too big (that is, f, is a rapidly varying function) the numerical solutions
tend to the steady-state slowly. However, decreasing the step size the situation is easily solved. In
fact, the step size to be used seems to depend much more on the nonlinear character of f that on

the stiffness of the problem.

14 Conclusions.

In this first part we have introduced and studied a new family of methods for the numerical
integration of scalar autonomous ODEs. This work will help us in a second part because most of
the results and properties can be easily extended to system problems. These new methods seem
quite promising, for instance in the context of solving some nonlinear parabolic equations (by the
method of lines). We will investigate this and other questions in part II: ‘The separated system

case’.
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