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Abstract

We investigate a new family of explicit two{stage methods for the numerical integration of
scalar autonomous ODEs. We show that it is possible to obtain formulae of order three
with only two evaluations per step. Moreover, we can obtain A{stable and L{stable meth-
ods of order three from the preceding family. Finally we compare the new methods with
other conventional methods, to show that they perform better, carrying out some numerical
experiments.

1 Introduction.

Our aim in the present work is to develop new explicit A{stable methods of order three, involving
two function evaluations per step, for the scalar autonomous problem

y0 = f(y) ; y(x0) = y0 ; f : IR! IR : (1)

It is well{known that an explicit two{stage Runge{Kutta method cannot have order greater
than two when applied to (1) (see [2], pp. 173{178). Moreover, none of them is A{stable (the
stability function of all such methods is a polynomial) ([2], pp. 198{203).

The explicit two{stage methods we get, can be shown as a generalization of the explicit
two{stage R{K methods (for scalar autonomous problems) that provide better order and linear
stability results. For our methods, the stages are given as in the Runge{Kutta ones, but the
resulting formulae involve rational functions of the stages.

At the cost of losing the linearity in the �nal formulae, we get many free parameters that
allow us to obtain A{stable methods of order three. In fact, as a �rst example, we can obtain an
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A{stable explicit two{stage method of order three, whose stability function is given by the (2; 2){
Pad�e approximation to the exponential function (see [1], pp. 50{51). Furthermore, we can get
an L{stable method, with associated stability function given by the (1; 2){Pad�e approximation
to the exponential.

We can generalize the previous idea and obtain explicit s{stage A{stable methods of order
greater than s. For example, it is possible to get explicit three-stage A{stable formulae for
problem (1), of order �ve. However, in the present work we shall restrict our attention to
two{stage methods.

Finally we compare the new methods with other methods of Runge{Kutta type, to show that
they perform better when applied to the problem (1), carrying out some numerical experiments.

2 Construction of the new methods.

We consider the family of explicit two{stage methods for problem (1), de�ned by

yn+1 = yn + hF (k1; k2) ; (2)

where k1 and k2 given by
k1 = f(yn) ; k2 = f(yn + hc2k1) ; (3)

with c2 6= 0. F (x; y) is some rational function given in terms of the quotient of two homogeneous
polynomials N(x; y) and D(x; y) with degrees r+1 y r respectively, for some r 2 IN. So F (x; y)
takes the form

F (x; y) =
N(x; y)

D(x; y)
=

r+1X
i=0

Nix
r�i+1yi

rX
i=0

Dix
r�iyi

: (4)

In the above expression it is possible to consider r 2 ZZ. However, it is easily seen that for any
r < 0 we can obtain an equivalent formulae of the preceding family of methods, multiplying the
numerator and the denominator of F (x; y) by the factor x�ry�r.

Obviously, there is no loss of generality in assuming that the polynomials N(x; y) andD(x; y)
do not have common factors.

The family of methods we have just de�ned, can be shown as a generalization of the explicit
two{stage Runge{Kutta methods (for the problem 1). In fact, taking r = 0 in (4) we get all the
R{K formulae as a subfamily of our methods.

3 Consistency of the methods.

It is well-known that consistency is a necessary condition for a numerical process to be conver-
gent. So we are interested in studying the consistency of the methods given by (2).

A single{step method for problem (1) takes the form

yn+1 = yn + h�(yn; h) : (5)

The numerical method (5) is said to be consistent with the di�erential equation (1) if

�(y; 0) = f(y) : (6)



For our methods � is given by
�(y; h) = F (k1; k2) ; (7)

where F is de�ned as in (4), but now

k1 = f(y) ; k2 = f(y + hc2k1) : (8)

Taking h = 0 we have k1 = k2 = f(y), and from the fact that F is an homogeneous function we
get

�(y; 0) = F (f(y); f(y)) =
N(1; 1)

D(1; 1)
f(y) : (9)

Thus we obtain the consistency condition

N(1; 1)

D(1; 1)
= 1 : (10)

It follows that we must take D(1; 1) 6= 0 so that the consistency condition holds. From now
on, and without loss of generality, we can also assume that N(1; 1) = D(1; 1) = 1 holds for any
consistent method of our family.

With the previous assumptions we get the uniqueness in the representation of our consistent
methods. In what follows, we will restrict our attention to these consistent methods of our
family.

4 A useful notation.

We want to simplify the study of the order of consistency and the linear stability properties of
our methods. So we will introduce new notations in order to obtain a better expression of our
formulae. We de�ne

s =
k2 � k1
c2k1

; (11)

where c2 6= 0 and k1, k2 are given by (3). Note that s depends on the choice of the parameter c2.
In terms of s, any consistent method of the preceding family takes the form

yn+1 = yn + hk1G(s) ; (12)

where G is given by

G(s) =
P (s)

Q(s)
=

1 +
nX

i=1

nis
i

1 +
dX

i=1

dis
i

; (13)

with P and Q not having common factors. It is easy to show that any consistent method de�ned
in terms of k1 and k2 through (2) can be but in terms of s in an only way, and the resulting
formula takes the form (12) (the opposite is also true). Since (11) implies k2=k1 = 1 + c2s, we
have

F (k1; k2) = k1F

�
1;
k2
k1

�
= k1F (1; 1 + c2s) = k1G(s) : (14)



In the same manner we have from (11) that

k1G(s) = k1G

�
k2 � k1
c2k1

�
= F (k1; k2) ; (15)

holds.
It is easily seen that n and d (in 13) are given in terms of Ni, Di, and r (in 4) by n =

maxfi = 0; 1; : : : ; r + 1=Ni 6= 0g and d = maxfi = 0; 1; : : : ; r=Di 6= 0g. Obviously, we also have
n0 = d0 = 1 in (13) from the condition N(1; 1) = D(1; 1) = 1.

It is a simple task to show that s = O(h) and therefore we have that sk = O(hk) for any
given k 2 IN. This implies that when we consider the equations related to order lower or equal
to k + 1, it su�ces to consider the parameters ni and di with i � k, that is, we can restrict our
attention to formulae given by (12) with n = d = k.

5 Attainable order for the methods.

We will investigate the order of consistency of any explicit two{stage method given by (12). As
is usual with other single{step methods, we begin considering the local truncation error Tn+1 of
a consistent formula of our family at the point xn, that is

Tn+1 = y(xn+1)� y(xn)� hk1G(s) ; (16)

where now k1, k2 and s are given by

k1 = f(y(xn)) ; k2 = f(y(xn) + hc2k1) ; s =
k2 � k1
c2k1

; (17)

and G is de�ned by (13).
We suppose that f is smooth enough in order to give sense to all the derivatives that will

appear in what follows.
To show that some methods of the family attain order three, it su�ces to consider the

subfamily we get when taking n = d = 2 in the expression (13) of function G (as we have shown
in the last section), and we will do so in the later.

Now we consider the Taylor's expansion of y(xn+1) = y(xn + h)

y(xn+1) = y(xn) + hf +
h2

2
ffy +

h3

6
[ff2y + f2fyy ] +O(h4) ; (18)

where f , fy and fyy are all evaluated at the point y(xn). If we expand s = s(h) as a function of
h (note that s depends on c2 through expression (11) ), we obtain

s = hfy +
h2

2
c2ffyy +O(h3) ; (19)

and it is clear that s = O(h). Now from (16), (18) and (19) we get

Tn+1 =
h2

2
(1� 2(n1 � d1))ffy +

h3

6
[(1� 6((n2 � d2)� d1(n1 � d1)))ff

2
y

+(1� 3c2(n1 � d1))f
2fyy ] +O(h4) ; (20)



and therefore a consistent method must satisfy the following conditions in order to have order
three

n1 � d1 =
1

2
; (21)

(n2 � d2)� d1(n1 � d1) =
1

6
; (22)

c2(n1 � d1) =
1

3
: (23)

Any consistent method satisfying (21) has, at least, order two.
It is easy to check that the above system has many solutions. In fact, we get a two{parameter

family of solutions given in terms of d1 and d2 by

c2 =
2

3
; n1 =

1

2
+ d1 ; n2 =

1

6
+
1

2
d1 + d2 : (24)

It is a simple task to show that no two-stage method of our family has order greater than three
(it su�ces to take n = d = 3 in (13) and expand to an higher order the above expressions).

From (24) we have that any three order method of the subfamily we get taking (n=d=2) in
(13) takes the form (in terms of the parameters d1 and d2)

yn+1 = yn + hk1G(s) ; (25)

where

G(s) =
1 +

1 + 2d1
2

s+
1+ 3d1 + 6d2

6
s2

1 + d1s+ d2s2
; (26)

and k1, k2 and s are given as usually by

k1 = f(yn) ; k2 = f

�
yn +

2

3
hk1

�
; s =

3(k2� k1)

2k1
: (27)

In order to get the general form of a three order method of our family (without the restriction
n = d = 2) it su�ces to take in the above expressions

G(s) =

1 +
1 + 2d1

2
s+

1 + 3d1 + 6d2
6

s2 +
nX

i=3

nis
i

1 + d1s + d2s2 +
dX

i=3

dis
i

; (28)

in place of (26). This follows from the fact that s = O(h).

6 A �rst example.

As a �rst example, we can take di = 0 and ni+2 = 0 for i � 1 . The resulting three order formula
is given by

yn+1 = yn + hk1

 
1 +

s

2
+

s2

6

!
; (29)

where k1 and s are de�ned through (27).



Let us consider the problem

y0 = 1� y2 ; y(0) = 0 ; (30)

with true solution given by y(x) = (e2x � 1)=(e2x + 1). When we apply method (29) to this
problem for a range of values of x and h, we get the Table 1 of errors.

Table 1: Errors for our method of order three.

jerrorj h = 0:1 h = 0:05 h = 0:025 h = 0:0125

x = 1:0 0:6267D� 05 0:8245D� 06 0:1057D� 06 0:1338D� 07
x = 3:0 0:5719D� 05 0:6606D� 06 0:7936D� 07 0:9725D� 08
x = 5:0 0:2464D� 06 0:2846D� 07 0:3419D� 08 0:4189D� 09
x = 7:0 0:7107D� 08 0:8215D� 09 0:9868D� 10 0:1209D� 10
x = 9:0 0:1776D� 09 0:2054D� 10 0:2468D� 11 0:3022D� 12

Now we consider the two{stage Heun method of order two (an example of an explicit two{
stage Runge{Kutta formula), that is

yn+1 = yn + h

�
1

4
k1 +

3

4
k2

�
; (31)

where

k1 = f(yn) ; k2 = f

�
yn +

2

3
hk1

�
: (32)

Note that Heun's method makes use of the same evaluations as our method (k1 y k2 are the
same in both methods). When we apply Heun's formula to problem (30) we obtain Table 2 of
errors.

Table 2: Errors for Heun's formula of order two.

jerrorj h = 0:1 h = 0:05 h = 0:025 h = 0:0125

x = 1:0 0:7298D� 03 0:1745D� 03 0:4267D� 04 0:1055D� 04
x = 3:0 0:1532D� 03 0:3540D� 04 0:8534D� 05 0:2096D� 05
x = 5:0 0:5758D� 05 0:1309D� 05 0:3142D� 06 0:7706D� 07
x = 7:0 0:1611D� 06 0:3615D� 07 0:8645D� 08 0:2118D� 08
x = 9:0 0:4002D� 08 0:8866D� 09 0:2114D� 09 0:5175D� 10

The two preceding tables show that our method perform better. Moreover, if we consider
the three{stage Heun's method of order three, that is

yn+1 = yn + h

�
1

4
k1 +

3

4
k3

�
; (33)

where now

k1 = f(yn) ; k2 = f

�
yn +

1

3
hk1

�
; k3 = f

�
yn +

2

3
hk2

�
; (34)

and we apply it to problem (30), we get Table 3. So our �rst method performs more or less as
the three order Heun's method (from an error and order point of view), but it makes use of less
function evaluations per step (see Figures 1 and 2).



Table 3: Errors for Heun's method of order three.

jerrorj h = 0:1 h = 0:05 h = 0:025 h = 0:0125

x = 1:0 0:6910D� 05 0:8471D� 06 0:1045D� 06 0:1298D� 07
x = 3:0 0:6283D� 05 0:7298D� 06 0:8793D� 07 0:1079D� 07
x = 5:0 0:2568D� 06 0:2975D� 07 0:3578D� 08 0:4387D� 09
x = 7:0 0:7298D� 08 0:8451D� 09 0:1016D� 09 0:1245D� 10
x = 9:0 0:1811D� 09 0:2097D� 10 0:2521D� 11 0:3090D� 12
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Figure 1: y0=1�y2; y(0)=0; h=0:05; t2 [0;10].
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Figure 2: y0=1�y2; y(0)=0; h=0:01; t2 [0;2].

7 Linear stability properties.

When we apply a consistent method of our family to the scalar test equation

y0 = �y ; � 2 C ; (35)

we get
yn+1 = R(z) yn ; (36)

where R(z) is the associated stability function (with z = h�). When applied to the test equation,
we have from (11) that s = h�, and therefore R(z) is

R(z) = 1 + zG(z) = 1 + z

1 +
nX

i=1

niz
i

1 +
dX

i=1

diz
i

: (37)

The stability function R(z) for a three order method takes the form

R(z)=1 + z

1+
1 + 2d1

2
z+

1+ 3d1 + 6d2
6

z2+
nX

i=3

niz
i

1 + d1z + d2z2 +
dX

i=3

diz
i

: (38)



When we take d1 = �1=2, d2 = 1=12 and ni = di = 0 for i � 3, the resulting stability function
is given by

R(z) =
12 + 6z + z2

12� 6z + z2
; (39)

that is, the (2; 2){Pad�e approximation to ez . So we get a �rst example of an A{stable explicit
two{stage method of order three

yn+1 = yn + hk1

�
12

12� 6s+ s2

�
; (40)

that is

yn+1 = yn + h

 
16 (k1)3

31 (k1)2 � 18 k1 k2 + 3 (k2)2

!
: (41)

It is also easy to obtain L{stable methods of order three. For example, taking d1 = �2=3,
d2 = 1=6 and ni = di = 0 for i � 3, we get that the associated stability function is given by the
(1; 2){Pad�e approximation to ez

R(z) =
6 + 2 z

6� 4 z + z2
; (42)

from which we get the L{stable formula

yn+1 = yn + h k1

�
6� s

6� 4 s+ s2

�
: (43)

It is also possible to construct an L{stable method of order three, with associated stability
function given by the (1; 3){Pad�e approximation to ez (see [3]). Moreover, for a given rational
function R(z) we can get methods of the family (2), whose stability function is R(z) (see [4]).

8 More numerical experiments.

We consider the problem
y0 = 1000(1� y) ; y(0) = 0 ; (44)

whose solution is given by y(x) = 1 � e�1000x. This problem is a particular case of a family of
scalar equations of Prothero and Robinson, given by

y0 = �(y � g(x)) + g0(x) : (45)

Applying the last two methods to the preceding problem, we get Tables 4 and 5. From these
tables it is clear that both methods perform well, even when we take great steps. Obviously the
L{stable method works better for this problem.

9 Non{linear stability considerations.

The study of the non{linear stability properties of the methods is very di�cult. The rational
functions of the stages involved in our formulae complicate the study of such properties from
a theoretical point of view. So we will consider some numerical experiments with non{linear
test problems of the form y0(x) = f(y(x)), in which f is one{sided Lipschitz continuous with
one{sided Lipschitz constant 0. We know that if u and v are two solutions to such a problem



Table 4: Errors for the A{stable method.

jerrorj h = 0:5 h = 0:25 h = 0:125 h = 0:0625

x = 1:0 0:9531D+ 00 0:8253D+ 00 0:4639D+ 00 0:4633D� 01
x = 2:0 0:9085D+ 00 0:6811D+ 00 0:2152D+ 00 0:2146D� 02
x = 3:0 0:8659D+ 00 0:5621D+ 00 0:9986D� 01 0:9944D� 04
x = 4:0 0:8253D+ 00 0:4639D+ 00 0:4633D� 01 0:4607D� 05
x = 5:0 0:7866D+ 00 0:3829D+ 00 0:2149D� 01 0:2134D� 06

Table 5: Errors for the L{stable method.

jerrorj h = 0:5 h = 0:25 h = 0:125 h = 0:0625

x = 1:0 0:1556D� 04 0:3661D� 08 0:2740D� 14 0:1993D� 24
x = 2:0 0:2420D� 09 0:1341D� 16 0:7510D� 29 0:0000D+ 00
x = 3:0 0:3766D� 14 0:4908D� 25 0:0000D+ 00 0:0000D+ 00
x = 4:0 0:5859D� 19 0:1926D� 33 0:0000D+ 00 0:0000D+ 00
x = 5:0 0:9115D� 24 0:0000D+ 00 0:0000D+ 00 0:0000D+ 00

with initial values given at x0, then for any x � x0 , ju(x)� v(x)j � ju(x0)� v(x0)j holds. We
want to see if the numerical solutions obtained from our methods have a similar behaviour.

We will consider the sti� problem

y0 = (y � 1)(y � 1001) ; y(0) = a ; (46)

whose solution is given in terms of the initial condition a by

y(x) = 1 +
1000(a� 1)e�1000x

(a� 1)e�1000x+ 1001� a
: (47)

It is easy to show that the true solutions are contractive for a < 501, and after a short transient
they are virtually identical to the steady{state solution y(x) = 1 (the solution of (47) with
a = 1).

When we apply the A{stable formula to this problem with �xed step h = 0:1 for a range of
values of the parameter a we get Figures 3 and 4. Figure 3 shows that the numerical solutions we
get taking values of a = 5; 10; 15 have a contractive behaviour. However, from Figure 4 it is clear
that for a = �10;�5; 0 the numerical solutions do not have this good qualitative behaviour.

Applying the L{stable method to the same problem, for a range of values of a and with
�xed step h = 0:1, we obtain Figures 5 and 6. Now Figure 5 shows that the numerical solutions
we get with the L{stable method, from the values a = 100; 200; 300 are contractive. Taking
a = �15;�10;�5, the resulting solutions (see Figure 6 ) do not have this property.

Numerical experiments with a wide range of values of a and h show that taking 1 < a < 501,
the numerical solutions are contractive for both methods. For �xed h and a (with 1 < a < 501),
the L{stable method is better than the A{stable from a qualitative point of view (the numerical
solutions for the L-stable formula go faster to the steady{state solution).

When we consider a < 1 the situation changes and both methods have numerical solutions
that are not contractive in general. In fact, taking a << 0 some solutions cross the steady{state
solution (as can be shown in Figures 4 and 6) or even go away from this solution.
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Figure 3: y0 = (y � 1) (y � 1001) ; y(0) = a ;
h = 0:1 ; x 2 [0; 5] . Numerical solutions for
a = 5; 10; 15 with the A{stable method.

x

y

-10

-8

-6

-4

-2

0

2

4

6

0.5 1 1.5 2 2.5 3

Figure 4: y0 = (y � 1) (y � 1001) ; y(0) = a ;
h = 0:1 ; x 2 [0; 3] . Numerical solutions for
a = �10;�5; 0 with the A{stable method.
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Figure 5: y0 = (y � 1) (y � 1001) ; y(0) = a ;
h = 0:1 ; x 2 [0; 3] . Numerical solutions for
a = 100; 200; 300 with the L{stable method.
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Figure 6: y0 = (y � 1) (y � 1001) ; y(0) = a ;
h = 0:1 ; x 2 [0; 2] . Numerical solutions for
a = �15;�10;�5 with the L{stable method.
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