(Contents of)

S. Novo, R. Obaya y J. Rojo Ecuaciones y sistemas diferenciales Editorial AC, Madrid, 1992 533 pp.

Ecuaciones y sistemas diferenciales

Sylvia NOVO Rafael OBAYA Jesús ROJO

Doctores en Matemáticas Departamento de Matemática Aplicada E.T.S. de Ingenieros Industriales de Valladolid

Sylvia NOVO Rafael OBAYA Jesús ROJO

Ecuaciones y sistemas diferenciales

AMS Subject Classifications: 34 y 35 Clasificación Decimal: 517.9

Sylvia NOVO Rafael OBAYA Jesús ROJO

Departamento de Matemática Aplicada E.T.S. de Ingenieros Industriales Paseo del Cauce, s/n 47011 VALLADOLID, España

Contenido

Co	Contenido		\mathbf{v}
Pr	Prólogo. Notas para el lector.		
No			
1	Intr	oducción.	1
	1.1	Ecuaciones diferenciales y soluciones	1
		1.1.20 Ejercicios	12
	1.2	Resultados sencillos para ecuaciones sencillas	12
		1.2.11 Ejercicios	16
	1.3	Significado geométrico de $y' = f(t, y)$	17
		1.3.4 Ejercicios	20
	1.4	Crecimiento exponencial y crecimiento logístico	21
		1.4.7 Ejercicios	27
	1.5	Un ejemplo de linealización de una ecuación de segundo orden.	29
		1.5.5 Ejercicios	35
2	La e	ecuación escalar lineal de primer orden.	37
	2.1	La ecuación escalar lineal de primer orden	37
		2.1.8 Ejercicios	41
	2.2	Cambios de variable	42
		2.2.15 Ejercicios	49
	2.3	Ecuaciones que se reducen a la lineal de primer orden	51
		2.3.10 Ejercicios	55
3	Cua	draturas para la resolución de las ecuaciones escalares	
de	prir	ner orden.	59
	3.1	Ecuaciones exactas	60
		3.1.19 Ejercicios	68
	3.2	Factores integrantes	69

vi Contenido

	3.2.10 Ejercicios	73
3.3	Algunos factores integrantes	74
	3.3.8 Ejercicios	77
3.4	Factor integrante para las ecuaciones homogéneas	80
	3.4.5 Ejercicios	82
3.5	Modelos con ecuaciones de primer orden	83
	3.5.4 Ejercicios	87
4 Ex	istencia. Unicidad de soluciones. Dependencia respecto	D
de las	condiciones iniciales y los parámetros.	93
4.1	Normas vectoriales y normas matriciales.	94
	4.1.11 Ejercicios	99
4.2	El espacio de las funciones continuas	101
	4.2.10 Ejercicios	107
4.3	Un teorema local de existencia de soluciones	108
	4.3.10 Ejercicios	116
4.4	Un teorema local de existencia y unicidad de soluciones	118
	4.4.20 Ejercicios	129
4.5	Teoremas globales de existencia y unicidad	131
	4.5.30 Ejercicios	147
4.6	Dependencia continua respecto de parámetros y condiciones	
	iniciales	151
	4.6.17 Ejercicios	165
4.7	Derivabilidad respecto de condiciones iniciales y parámetros.	167
	4.7.10 Ejercicios	174
5 Ec	uaciones de primer orden no resueltas respecto de la de	:-
rivada	ı .	177
5.1	Planteamiento del problema; algunos ejemplos	178
	5.1.6 Ejercicios	182
5.2	Un teorema de existencia y unicidad local	183
	5.2.6 Ejercicios	186
5.3	El p -discriminante	186
	5.3.14 Ejercicios	192
5.4	La envolvente de una familia de curvas y el c -discriminante.	193
	5.4.13 Ejercicios	197
5.5	Métodos de resolución de algunos tipos simples de ecuaciones	
	no resueltas respecto de la derivada.	198
	5.5.21 Ejercicios	209
5.6	Las ecuaciones de Lagrange y de Clairaut	212
	5.6.5 Ejercicios	214

Contenido	vii
-----------	-----

6	Ecu	aciones y sistemas lineales.	217
	6.1	Un teorema de existencia y unicidad	217
		6.1.9 Ejercicios	221
	6.2	Soluciones de un sistema lineal homogéneo	222
		6.2.22 Ejercicios	233
	6.3	Soluciones de un sistema no homogéneo	235
		6.3.8 Ejercicios	239
	6.4	Soluciones de la ecuación lineal homogénea	240
		6.4.28 Ejercicios	252
	6.5	La ecuación lineal no homogénea	255
		6.5.9 Ejercicios	259
	6.6	La función de Green para el problema de Cauchy	259
		6.6.14 Ejercicios	270
7	Má	todos de resolución de ecuaciones y sistemas lineales.	271
•	7.1	La exponencial de una matriz	271
	1.1	7.1.6 Ejercicios	$\frac{271}{274}$
	7.2	Sistemas lineales con coeficientes constantes	$\frac{271}{275}$
	1.4	7.2.25 Ejercicios	$\frac{210}{292}$
	7.3	Soluciones asociadas a los valores propios	$\frac{232}{295}$
	1.0	7.3.11 Ejercicios	$\frac{230}{302}$
	7.4	Sistemas lineales no homogéneos de coeficientes constantes.	$\frac{302}{303}$
	1.1	7.4.13 Ejercicios	310
	7.5	Ecuaciones lineales con coeficientes constantes	312
	1.0	7.5.9 Ejercicios	316
	7.6	Ecuaciones lineales no homogéneas de coeficientes constantes	
	1.0	7.6.7 Ejercicios	321
	7.7	El método operacional	$\frac{321}{324}$
	1.1	7.7.30 Ejercicios	$\frac{324}{335}$
	7.8	El método de aniquilación	$\frac{335}{337}$
	1.0	7.8.9 Ejercicios	$\frac{337}{341}$
	7.9	La ecuación de Euler	$\frac{341}{342}$
	1.9	7.9.5 Ejercicios	$\frac{342}{344}$
		1.3.9 Electricis	944
8		emas y ecuaciones lineales de coeficientes periódicos.	347
	8.1	La teoría de Floquet	347
		8.1.20 Ejercicios	359
	8.2	Algunos ejemplos	363
		8.2.6 Ejercicios	368

viii	${f Contenido}$
------	-----------------

9	La e	ecuación adjunta. Teoría de Sturm.	371
	9.1	La ecuación adjunta	372
		9.1.21 Ejercicios	382
	9.2	Ecuaciones reales autoadjuntas de segundo orden	384
		9.2.14 Ejercicios	388
	9.3	La teoría de Sturm para la ecuación lineal real autoadjunta	
		$[p(t) y']' + q(t) y = 0.\dots\dots\dots\dots\dots\dots\dots\dots\dots$	390
		9.3.18 Ejercicios	401
	9.4	Ejemplo: la ecuación de Bessel	403
		9.4.2 Ejercicios	406
10	Pro	blemas lineales regulares de contorno.	409
		Ejemplo: La cuerda vibrante	410
		10.1.2 Ejercicios	413
	10.2	Problemas lineales regulares de contorno	414
		10.2.22 Ejercicios	424
	10.3	La función de Green para el problema de contorno	425
		10.3.14 Ejercicios	439
	10.4	El problema adjunto; problemas autoadjuntos	443
		10.4.23 Ejercicios	456
	10.5	Problemas de autovalores	459
		10.5.22 Ejercicios	479
	10.6	Desarrollo en serie de autofunciones	480
		10.6.9 Ejercicios	488
	10.7	Problemas de autovalores de Sturm-Liouville	489
		10.7.8 Ejercicios	497
	10.8	Separación de variables	500
		10.8.15 Ejercicios	516
Li	bros	cuya lectura se recomienda.	523
In	dice		527

Prólogo.

El texto del libro forma parte de un curso de Ecuaciones diferenciales que se ha venido impartiendo en la E.T.S. de Ingenieros Industriales de Valladolid. Sin embargo, no abordamos problemas singulares de contorno, funciones especiales, teoría de estabilidad, cálculo de variaciones, sistemas autónomos y métodos numéricos, que incluiremos en un volumen posterior. Algunos capítulos se han extendido algo más de lo que se hace habitualmente en nuestras clases, procurando que el libro pueda ser útil al mayor número posible de lectores. En este sentido, a pesar de estar dirigido a alumnos de Escuelas Técnicas, el libro puede ser útil a los alumnos de las Facultades de Ciencias.

El libro está pensado para facilitar la comprensión, por parte del alumno, de las técnicas básicas de ecuaciones diferenciales. Por ello se incluyen numerosos ejemplos y se detallan cuidadosamente la mayoría de las demostraciones. Omitimos algunas de las que presentan mayor dificultad, o que se basan en resultados que no forman parte de un curso básico de Álgebra lineal y de Cálculo, que son las materias que se suponen conocidas de antemano.

Valladolid, septiembre de 1992

Los Autores

x Prólogo

Notas para el lector.

El libro se estructura en capítulos (del 1 al 10); cada capítulo, en secciones que llevan asignados dos números, el primero de los cuales es el del capítulo al que pertenecen; una sección se divide en apartados; de los tres números que asignamos a cada apartado, los dos primeros son los de la sección en la que se encuadra.

El último apartado de cada sección se reserva a los ejercicios. El ejercicio 3.1.19.4 es el cuarto ejercicio del apartado 3.1.19, o, si se prefiere, de la sección 3.1.

Las citas del tipo (véase 9.3.14) o (v. 9.3.14) se refieren a resultados anteriores que se utilizan en el texto. Se usan preferentemente cuando los resultados a que se refieren son algo lejanos. El número de citas disminuye a medida que avanza el texto ya que, poco a poco, el lector irá conservando en la memoria los resultados más importantes.

Los resultados que aparecen enmarcados por dos líneas llevan delante el título de TEOREMA, PROPOSICIÓN, COROLARIO o LEMA; todos ellos son teoremas. La razón por la que les asignamos diferentes títulos es dar una idea de su importancia y de su utilidad. En general hemos reservado el nombre de teorema para los que consideramos más importantes. Un corolario es un teorema que es consecuencia inmediata de otro que le precede. Un lema es un teorema cuya importancia reside, más que en sí mismo, en su utilización para probar un resultado que sigue a continuación.

La mayor parte de los resultados no aparecen enmarcados. Esto se debe en muchos casos a que nos ha parecido útil mezclar el enunciado con algunos comentarios, por lo que no se prestan tan claramente a separar enunciado, demostración y comentarios.

Aparecen diferentes símbolos para enumerar los catálogos de propiedades; lo más frecuente será encontrar a), b), c), etc. Los listados con (i), (ii), (iii), etc. son siempre de propiedades equivalentes entre sí.

Algunos ejercicios sólo poseen interés cuando se realizan inmediatamente a continuación de la teoría que los precede, porque sirven para mejorar la comprensión de ciertos temas. Si se dejan para más tarde pueden haber perdido buena parte de su interés; en ocasiones forman parte incluso de la exposición teórica posterior.

Las notaciones que aparecen en los ejercicios y que no se explican, son las que se han definido en la teoría.

Además del texto y los ejercicios, este libro posee varias secciones que el lector debe acostumbrarse a utilizar, ya que le resultarán útiles. Hay dos índices y una lista comentada de libros cuya lectura se recomienda.