
(Preprint for)

R. Caballero and J. Rojo

An e�cient implementation of the RSA Cryptographic Technique

pp. 109-116 in
J. Tena y M.F. Blanco(eds.)
Actas de la IV Reuni�on Espa~nola sobre Criptolog��a

Valladolid, 9-11 Septiembre 1996

1

An E�cient Implementation of the RSA

Cryptographic Technique

Rafael Caballero(1) and Jes�us Rojo(2)

(1)Died (2)Depto. de Matem�atica Aplicada a la Ingenier��a, Univ. de Valladolid,

Paseo del Cauce s/n, 47011 Valladolid, Spain, e-mail: jesroj@wmatem.eis.uva.es

Abstract

We present a package of Mathematica to carry out the encoding and decoding
process of the RSA cryptographic technique; this is one of the best known in-
stances of a public cryptographic system and has a strong presence in the modern
literature. We describe and implement the authentication operation (signature).
Several examples are shown.

1 Public{key cryptographic techniques

Public key cryptographic techniques Di�e and Hellman [4], were born as a solution
to most of the problems of the `classical' techniques. They were so succesful that
as a result the classical techniques have nearly disappeared, as Gardner states in his
overview, Gardner [5]. According to the preceding authors, a public key cryptosys-
tem is a pair of algorithms E;D (`encoding' and `decoding'), that act over a message
M producing another one. E and D are the codifying and decodifying procedures,
respectively. The properties required are:

� the algorithm D is the inverse of E, that is D(E(M)) = M ;

� the algorithms E and D are computationally simple;

� the knowledge of the encoding algorithm E does not enable anyone to �nd the
decoding one D;

� if the key is known, both E and D may be easily computed.

The third property implies that one can make public his codifying procedure
E without having problems with the security of the decodifying technique D. So
everybody can send messages, using E, that only the owner of D, that is kept in
secret, can read.

We will assume that it is also veri�ed that E(D(M)) = M , so both algorithms
are mutually inverse. This property is veri�ed by the RSA public{key cryptographic
technique, which is the one we are mainly interested in.

In practice, we can think of M as a number. In fact, there are lots of forms
of transforming a text into a number. The method here presented deals with this
representation of the messages.

1

2 RSA technique

The RSA public{key cryptographic technique (after Rivest, Shamir and Adleman [9])
can be summarized as follows: a person chooses two large prime numbers p and q, that
are kept in secret, and let n = p q. After this, another large integer, d, is selected, such
that d is relatively prime to (p�1)(q�1). Finally an integer, e, is computed satisfying

e d � 1 [mod (p� 1)(q � 1)] ;

that is, e is the inverse of d modulo (p � 1)(q � 1). (Also d is the inverse of e, for
this reason both values are interchangeable.) The values of p and q can be forgotten
because they will no longer be needed. The public key pair is given by (e; n) and the
private one is (d; n), of which only d is secret.

In order to codify a message expressed as a numberM , as we shall see later, with
M < n, the encryption function is

E(M) = M e (mod n) :

This operation can always be done because it only uses the public key, and it can be
calculated easily because the mod n operation can be applied in each multiplication.

To decodify a number N , we set

D(N) = N d (mod n);

this operation can only be carried out if one has the secret key. Euler's theorem
guarantees that, if M < n, D(E(M)) = M , as it is needed to recover the original
message.

To decipher this system it is necessary to factorize the number n, and so calculate
the secret key. The fact that makes this technique actually unbreakable is that a
fast algorithm (polynomial time) to factor integers into their primes in a reasonable
amount of time is not known. A realistic computation, Knuth [7], shows that factoring
a 250{digit number would take more than 3 � 1011 years.

3 Signature procedure

The aforementioned inversion property provides us with an ingenious signature proce-
dure. A person B want to send a message to another person A, so that A is completely
sure that it comes from B and that the transmission is safe from strangers. With
the preceding technique everybody can send a message to A, who therefore can't be
sure of its source. This authentication operation can be carried out by the following
method: let M be the message to send, EA and DA the public and private keys of the
person A, and EB and DB their corresponding ones of B. Person B sends the message
EA(DB(M)) = N , applying �rst B's own private and secret algorithm and afterwards
the public one of A. Then A makes EB(DA(N)) = M employing A's private key and
�nally the public one of B, recovering the original message M . As can be easily un-
derstood only B can send N , because the private key of B appears, and only A can
decodify N for the same reason.

2

More technical details and a good introduction to cryptography can be found in
Akritas [1]. An excellent reference to the problem of factoring integers, that includes
a paragraph on the RSA method, more speci�c than in our case, is Knuth [7]. There
are several books about algorithms that include a section about the RSA technique,
such as Brassard and Bratley [2], Cormen, Leiserson and Rivest [3], Manber [8], which
describe exponentiation procedures. The book Wagon [10] deals with the same matter
related to Mathematica.

4 Implementation

Here we present the di�erent functions developed to work with the RSA technique.
The use of Mathematica is highly recommended due to its exact precision in the work
with very long integers. The functions here programmed require a great deal of work in
the usual programming language, that can be saved using our symbolic system. This
package runs with 2.0 , 2.1 and 2.2 versions.

A function has been programmed to help the user in the selection of the primes
p and q: this function yields the �rst prime greater than a given integer. The function
is

NextPrime[a_Integer]:= a /;PrimeQ[a];

NextPrime[a_Integer]:= NextPrime[a+2]/;OddQ[a];

NextPrime[a_Integer]:= NextPrime[a+1]/;EvenQ[a];

It is necessary to look for approximately lnn numbers to �nd the following prime
number of the integer n. For instance, A computes his numbers p, q and n by means
of

In[1]:= pa=NextPrime[832946567513390228562041863202631\

208065435134650167498065313216540654032198404654654065\

4984654326543]

Out[1]= 8329465675133902285620418632026312080654351346\

501674980653132165406540321984046546540654984654327061

In[2]:= qa=NextPrime[365498064562197806546213468460321\

648905195187437491095126237951651216216219848457637025\

9654654210319]

Out[2]= 3654980645621978065462134684603216489051951874\

374910951262379516512162162198484576370259654654210377

In[3]:= na=pa qa

3

Out[3]= 3044403583098701558421693006905413672144409412\

792973335013753348405211149943353729381062178994009775\

749124689032934348385860461362860570610292326992618689\

7078206387761188786017307526546333415258111997

Another function allows A to compute the integer d so that GCD(d; (p� 1)(q� 1))=1 :

NextNumber[a_Integer,p_Integer,q_Integer]:=

a /;GCD[a,(p-1)(q-1)] == 1;

NextNumber[a_Integer,p_Integer,q_Integer]:=

NextNumber[a+1,p,q];

For example, person A calculates

In[4]:= da=NextNumber[59832198498732165498132065406498\

406213203210656879089048707810847092873418271849398475\

49340458869697,pa,qa]

Out[4]= 5983219849873216549813206540649840621320321065\

687908904870781084709287341827184939847549340458869699

Finally the integer e needs to satisfy e d � 1 [mod (p � 1)(q � 1)]. This number can be
found with the function

RSA[d_Integer,p_Integer,q_Integer]:=

PowerMod[d,-1,(p-1) (q-1)];

This function can be used with the previous values to give,

In[5]:= ea=RSA[da,pa,qa]

Out[5]= 2882705823690025829870330106438139930617015801\

510140665454439654288061725102141882942837123058645631\

444262786580239064510916832906556225640733628253487999\

8120264094811433882244502929816800339813046059

The number e can also be calculated solving a diophantine equation, because if e d �
1 [mod (p � 1)(q � 1)] then there exists an integer y that satis�es the equation e d �

y(p � 1)(q � 1) = 1. To calculate e and y a continued fraction technique can be used,
as is described in Henrici [6]. The function that summarizes this method is

Diophantine[k_Integer,l_Integer]:=

Module[{a,su},

a=Drop[Reverse[Floor[FixedPointList[1/(#1-Floor[#1]) &,

k/l,SameTest->(Floor[#2] == #2 &)]]],1];

su=Fold[1/#1+#2 &,a[[1]],Drop[a,1]];

If[OddQ[Length[a]],Return[

{Denominator[su],Numerator[su]}],

Return[{l-Denominator[su],k-Numerator[su]}]];

]

4

To compute the number e we can also set

In[6]:= ea=Diophantine[da,(pa-1)(qa-1)][[1]]

Out[6]= 2882705823690025829870330106438139930617015801\

510140665454439654288061725102141882942837123058645631\

444262786580239064510916832906556225640733628253487999\

8120264094811433882244502929816800339813046059

Of course, B computes and stores the numbers pb, qb, nb, db and eb in the same form,
and publishes the numbers eb and nb that constitute the public key. Therefore the
calculations of B will be

In[11]:= pb=NextPrime[49274837459378567382919189378437\

568393958875738393984775849393935753694529739517528415\

44156566516359];

In[12]:= qb=NextPrime[12490385209348520395680238946702\

394857023456237495467346235906234973428918911293877243\

78439580249837];

In[13]:= nb=pb qb;

In[14]:= db=NextNumber[4893935785696977857634368596964\

736489506583773219643400765914612004074213453983215672\

215739397576943,pb,qb];

In[15]:= eb=RSA[db,pb,qb];

Now we will see how to represent a text by a number. Traditionally to each
letter is assigned a two digit number, a ! 01, b ! 02, : : : , z ! 26, and other more
typographic characters are introduced. But as we are working with computers we will
use the ASCII code. The function that implements this conversion is

AsciiToCode[x_Integer]:=

If[x<132 && x>31, x-31, 1];

We subtract 31 to get only two digit numbers. The number corresponding to a string
results from joining the numbers of each character. The function that performs this is

StringToNumber[a_String]:=

Fold[100 #1+#2 &,0,Map[AsciiToCode,

EliminateSpaces[ToCharacterCode[a]]]]

For example, we have

In[7]:= number=StringToNumber["How are you?"]

Out[7]= 418088016683700190808632

5

Also there exist the inverse of these functions; they are

CodeToAscii[x_Integer]:=

If[x<100 && x>0, x+31, 32];

NumberToString[a_Integer]:=

FromCharacterCode[Reverse[Map[CodeToAscii[#1-100

Floor[#1/100]] &,

Drop[FixedPointList[(Floor[#1/100] &),a],-2]]]];

For example, we have

In[8]:= NumberToString[number]

Out[8]= How are you?

Finally, we need some functions to carry out the codifying and decodifying opera-
tions employing the RSA technique. For example, we suppose that B sends a message
to A. B has the function:

Codify[a_String,e_Integer,n_Integer]:=

PowerMod[StringToNumber[a],e,n]/;StringToNumber[a] < n;

Codify[a_String,e_Integer,n_Integer]:=

Print["Message too long"];

Every text of interest has a length that exceeds the number n, so we have programmed
a function that codi�es a message of arbitrary length, breaking it up into pieces of
length smaller than n. This function is

StringTakeRSA[a_String,i1_Integer,i2_Integer]:=

StringTake[a,{i1,i2}] /; i2 <= StringLength[a];

StringTakeRSA[a_String,i1_Integer,i2_Integer]:=

StringTake[a,{i1,StringLength[a]}]

/; i2 > StringLength[a];

CodifyText[a_String,e_Integer,n_Integer]:=

Module[{b,i},

b=Table[StringTakeRSA[a, i, i+Floor[N[Log[10,n]]/2]-1],

{i,1,StringLength[a],Floor[N[Log[10,n]]/2] }];

Return[Table[Codify[b[[i]],e,n],{i,1,Length[b]}]];

]

This function returns a list of numbers, each one corresponding to a part of the message.
This operation can be done by everybody, because only the public key is used. For
instance, B sends a message to A setting

In[9]:= list=CodifyText["Hello A, we have a meeting \

today at 8 p.m., in the usual place. We will deal \

with an important matter for our society. B.",ea,na]

6

Out[9]=

{19706600417539116952867828238279819073105497988221771\

262489679977031674185826922632756605371018023398368541\

666596537165954708317595401697252385886003152919087594\

920672173970905469475052476710376180076,52460777395005\

860384429186768571997037799952969456676302503017984399\

223126631935204234358404815117513485264004294862311164\

704344374192096713764918750578693801827322254598200679\

71027317030293384037071}

Finally, if B wants to send a message that other persons can't send, it is possible
to use the signature technique already given. The function that performs this is

CodifyTextWithSignature[a_String,d1_Integer,n1_Integer,

e2_Integer,n2_Integer]:=

PowerMod[CodifyText[a,d1,n1],e2,n2];

It is worth noticing that one generally has several CR (Carriage Return) in each text. We
have done a small modi�cation and substitute CR by a space, and several consecutive
ones are eliminated, resulting in only one, as other good programs do.

The necessary functions to decodify the number or the number list resulting from
the previous process are

Decodify[a_Integer,d_Integer,n_Integer]:=

NumberToString[PowerMod[a,d,n]];

DecodifyList[a_List,d_Integer,n_Integer]:=

StringJoin[Table[Decodify[a[[i]],d,n],{i,1,Length[a]}]];

DecodifyListWithSignature[a_List,e1_Integer,n1_Integer,

d2_Integer,n2_Integer]:=

DecodifyList[PowerMod[a,d2,n2],e1,n1];

The �rst function is an auxiliar one, which will be needed for the rest of them. For
example, to decodify the previous list of numbers, we use

In[10]:= DecodifyList[list,da,na]

Out[10]= Hello A, we have a meeting today at 8 p.m., \

in the usual place. We will deal with an important \

matter for our society. B.

Let us see now how to use the signature technique with a practical example. Person
B wants to send a message to A that he can read and be sure that it comes from B.
B does not know da and B does not know db. Person B must write the following
command

7

In[16]:= listsigned=CodifyTextWithSignature["Hello A, \

we have a meeting today at 8 p.m., in the usual place. \

We will deal with an important matter for our society. \

B.",db,nb,ea,na];

The person A, to read this message, must do the following:

In[17]:= DecodifyListWithSignature

[listsigned,eb,nb,da,na]

Out[17]= Hello A, we have a meeting today at 8 p.m., \

in the usual place. We will deal with an important \

matter for our society. B.

Finally we remark that the package has three `non{standard' aspects, that is to say,
facts that are not included in the general theory of the method. The �rst is the con-
version of letters into numbers; di�erent ways exist to perform this operation. Another
aspect is the partition of the string in substrings, which is carried out trying to produce
the minimum number of them, adjusting its length to the number n. The third aspect
is the sustitution of CR by a space and the elimination of repeated spaces. These three
aspects can be modi�ed by each user of the package.

References

[1] Akritas, A.G. 1989 : Elements of Computer Algebra with Applications. John Wiley
& Sons.

[2] Brassard, G. and Bratley, P. 1988 : Algorithmics. Prentice-Hall.

[3] Cormen, T.H., Leiserson, C.E. and Rivest, R.L. 1990 : Introduction to Algorithms.
MIT-Press.

[4] Di�e, W. and Hellman, M. 1976 : New Directions in Cryptography. IEEE Trans-

actions on Information Theory 22 (1976), 644-654.

[5] Gardner, M. 1989 : Penrose Tiles to Trapdoor Ciphers. Freeman.

[6] Henrici, P. 1977 : Applied and Computational Complex Analysis, volume 2. John
Wiley & Sons.

[7] Knuth, D.E. 1981 : The Art of Computer Programming, volume 2, Seminumerical
Algorithms, 2d ed. Addison-Wesley.

[8] Manber, U. 1989 : Introduction to Algorithms. Addison-Wesley.

[9] Rivest, R.L., Shamir, A. and Adleman, L.M. 1978 : A method for obtaining digital
signatures and public{key cryptosystems.Communications of the ACM 21 (1978),
120-126.

[10] Wagon, S. 1991 : Mathematica in Action. Freeman.

8

