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Abstract

In this work, we propose a new family of explicit two{stage formulae for the numerical

integration of scalar autonomous ODEs. For scalar autonomous problems, these methods

can be seen as a generalization of the explicit two{stage Runge{Kutta ones, that provides

better order and stability results. In fact, we show that it is possible to obtain formulae

of order three with only two evaluations per step. It is also possible to get A{stable and

L{stable methods of order three from the preceding family, without losing the explicitness

of the formulae. Finally we carry out some numerical experiments.

1 Introduction.

We consider the scalar autonomous problem

y0 = f(y) ; y(x0) = y0 ; f : IR! IR : (1)

From Butcher's theory we know that a Runge{Kutta method which has order k for a scalar
initial value problem may have order less than k when applied to a problem involving a system
of di�erential equations. However, when k � 3, any Runge{Kutta method has the same order
applied to systems as it has when applied to the scalar autonomous problem (see for example [1],
pp. 173{175).

The Butcher theory also shows that an s{stage explicit Runge{Kutta method cannot have
order greater than s ([1], pp. 176{178). Therefore, an explicit two{stage Runge{Kutta method
cannot have order greater than two when applied to (1).

Taking advantage of the structure of the problem (1), we obtain new explicit methods of
order three and only two evaluations per step. Our methods can be seen as a generalization
of the explicit Runge{Kutta methods (for scalar autonomous problems), that provides better
order and stability results with the same number of stages.

Moreover, the stability function of all the explicit Runge{Kutta formulae is a polynomial,
and so, none of them is A{stable ([1], pp. 198{200).
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proyect VA01/97.



Many unconventional classes of methods have been proposed in the literature (see for in-
stance [2], pp. 171{186), looking for better stability properties. Some of them, the so called
linear multistep methods with variable matrix coe�cients, make use of variable matrix coe�-
cients that in practice are taken to be an approximation to �@f=@y, for the purpose of achieving
good stability properties, but at the cost of being linearly implicit (see [3], pp. 39{45). Other
methods, the so called nonlinear methods, have good stability properties (A{stability or L{
stability) without losing the explicitness of the resulting formulae. However, such methods have
many problems involving the level of local accuracy. In fact, most of these methods fail when
the solution goes through a zero (losing their order), due to strange local truncation errors.

Our methods do not have this kind of problems. The local truncation errors associated to
our formulae, are of the same form as those associated to any Runge{Kutta method. In fact,
the stages are given as in the Runge{Kutta ones, but the resulting formulae involve rational
functions of the stages. At the cost of losing the linearity in the �nal formulae, we get many free
parameters that allow us to obtain a family of three order methods, whose stability function is
given by a rational function. Special choices of such parameters provide A{stable and L{stable
formulae with associated stability function given by Pad�e approximations to the exponential,
retaining the order three.

We also get methods that minimize the local truncation error (in fact, those methods applied
to (1) when f is linear, show order four).

We can generalize the preceding idea and obtain explicit s{stage A{stable methods for the
problem (1) of order greater than s. For example, it is possible to get explicit three-stage A{
stable formulae for problem (1), of order �ve. However, in the present work we restrict our
attention to two{stage methods.

Finally we show that the new methods perform well when applied to the problem (1), carrying
out some numerical experiments.

2 The new family of methods.

Let us consider the family of explicit two{stage methods for problem (1), de�ned by

yn+1 = yn + hF (k1; k2) ; (2)

where k1 and k2 given by
k1 = f(yn) ; k2 = f(yn + hc2k1) ; (3)

with c2 6= 0. F (x; y) is some rational function given in terms of the quotient of two homogeneous
polynomials N(x; y) and D(x; y) with degrees r+1 y r respectively, for some r 2 IN. So F (x; y)
takes the form

F (x; y) =
N(x; y)

D(x; y)
=

r+1X
i=0

Nix
r�i+1yi

rX
i=0

Dix
r�iyi

: (4)

Obviously, we can assume that the polynomials N(x; y) andD(x; y) do not have common factors,
without loss of generality.

Taking r = 0 in (4), we get all the explicit two{stage Runge{Kutta formulae (for problem 1)
as a subfamily of our methods.

It is easily seen that the consistency condition for such a method reads

N(1; 1)

D(1; 1)
= 1 : (5)



Therefore, we must take D(1; 1) 6= 0 so that the consistency condition holds. There is no loss of
generality in assuming that N(1; 1) = D(1; 1) = 1 holds for any consistent method of our family.

From the previous assumptions we get uniqueness in the representation of the consistent
methods. In what follows, we restrict our attention to consistent methods of our family.

Now we introduce new notations, in order to obtain a better expression of our formulae that
greatly simpli�es the study of the order of consistency and the linear stability properties. We
de�ne

s =
k2 � k1
c2k1

; (6)

where k1, k2 are given by (3). Note that s depends on the parameter c2. In terms of s, any
consistent method of the preceding family takes the form

yn+1 = yn + hk1G(s) ; (7)

where G is given by

G(s) =
P (s)

Q(s)
=

1 +
nX

i=1

nis
i

1 +
dX

i=1

dis
i

; (8)

with P and Q not having common factors. Any consistent method de�ned in terms of k1 and
k2 through (2) can be but in terms of s in an only way, and the resulting formula takes the
form (7). We have that n0 = d0 = 1 in (8), from the condition N(1; 1) = D(1; 1) = 1. In fact,
(6) implies k2=k1 = 1+ c2s, and therefore

F (k1; k2) = k1F

�
1;
k2
k1

�
= k1F (1; 1 + c2s) = k1G(s) : (9)

It is easily seen that n and d (in 8) are given in terms of Ni, Di, and r (in 4) by n = maxfi =
0; 1; : : : ; r+ 1=Ni 6= 0g and d = maxfi = 0; 1; : : : ; r=Di 6= 0g. For more details, see [4].

3 Order of the methods.

Now we investigate the order of consistency of any consistent method (7), by considering the
associated local truncation error Tn+1 at the point xn, that is

Tn+1 = y(xn+1)� y(xn)� hk1G(s) ; (10)

where now k1, k2 and s are given by

k1 = f(y(xn)) ; k2 = f(y(xn) + hc2k1) ; s =
k2 � k1
c2k1

; (11)

and G is de�ned by (8).
We suppose that f is smooth enough in order to give sense to all the derivatives that appear

in what follows.
If we expand s = s(h) as a function of h, we obtain

s = hfy +
h2

2
c2ffyy +O(h3) ; (12)

where f , fy and fyy are all evaluated at the point y(xn). So it is clear that s = O(h). From this
fact, we can see that when considering the equations related to order lower or equal to k+ 1, it
su�ces to consider the parameters ni and di with i � k, that is, we can restrict our attention
to formulae given by (7) with n = d = k.



A consistent method of the preceding family must satisfy the following conditions in order
to be of order three

n1 � d1 =
1

2
; (13)

(n2 � d2)� d1 (n1 � d1) =
1

6
; (14)

c2 (n1 � d1) =
1

3
: (15)

Any consistent method satisfying (13) has, at least, order two. The above system has a family
of solutions given in terms of the parameters d1 and d2 by

c2 =
2

3
; n1 =

1

2
+ d1 ; n2 =

1

6
+

1

2
d1 + d2 : (16)

The free parameters di and ni with i � 3 can be arbitrarily chosen. From (16) we have that any
three order method of the family takes the form

yn+1 = yn + hk1G(s) ; (17)

where

G(s) =

1 +
1 + 2d1

2
s+

1 + 3d1 + 6d2
6

s2 +
nX

i=3

nis
i

1 + d1s + d2s2 +
dX

i=3

dis
i

; (18)

and k1, k2 and s are given by

k1 = f(yn) ; k2 = f

�
yn +

2

3
hk1

�
; s =

3(k2� k1)

2k1
: (19)

A consistent formula of the family must satisfy the following additional conditions in order to
be of order four

(n3 � d3)� d1 (n2 � d2) + (d21 � d2) (n1 � d1) =
1

24
; (20)

c2 [(n2 � d2)� d1 (n1 � d1)] =
1

6
; (21)

c22 (n1 � d1) =
1

4
; (22)

It is a simple task to show that no two-stage method of our family has order four, but we can
make use of the free parameters to obtain three order methods with some interesting properties.
For example, we may try to minimize the local truncation error.

4 Optimal methods with respect to the local truncation error.

The local truncation error of any three order method of the family is

Tn+1 =

�
1� 24 (n3� d3) + 12 d2+ 4 d1

24
ff3y +

1

18
f2fyfyy +

1

216
f3fyyy

�
h4 + O(h5) ; (23)

and so it is not possible to attain order four, since two error coe�cients are constant. However,
it seems reasonable to use the free parameters to remove the variable coe�cient since this will
reduce the overall magnitude of the principal error term. Setting

n3 =
1 + 4 d1 + 12 d2 + 24 d3

24
; (24)

we get formulae that can be seen as optimal with respect to the local truncation error.



5 Looking for good linear stability properties.

Applying a consistent method of our family to the linear scalar test equation

y0 = �y ; � 2 C ; (25)

we get yn+1 = R(z) yn ; (26)

where R(z) is the associated stability function, with z = h� . When applied to the test equation,
we have from (6) that s = h�, and therefore R(z) is

R(z) = 1 + zG(z) ; (27)

with G given by (8).
Taking c2 = 2=3, d1 = �1=2, d2 = 1=12 and ni = di = 0 for i � 3 in (18) we obtain a three

order method whose stability function is given by

R(z) =
12 + 6z + z2

12� 6z + z2
; (28)

that is, the (2; 2){Pad�e approximation to ez . The method takes the form

yn+1 = yn + hk1

�
12

12� 6s+ s2

�
: (29)

So we have an �rst example of an A{stable explicit two{stage method of order three. Moreover,
it belongs to the family of optimal methods with respect to the local truncation error (see 24),
and therefore when applied to the linear problem y0 = � y + �, shows order four.

It is also easy to obtain L{stable methods of order three. For example, from the values
c2 = 2=3, d1 = �3=4, d2 = 1=4, d3 = �1=24, ni = 0 for i � 3 and di = 0 for i � 4 in (18), we
get a three order method whose stability function is given by the (1; 3){Pad�e approximation to
ez , that is

R(z) =
24 + 6z

24� 18z + 6z2 � z3
: (30)

The resulting formula is optimal with respect to the local truncation error, and takes the form

yn+1 = yn + hk1

 
24� 6s+ s2

24� 18s+ 6s2 � s3

!
: (31)

It is also possible to construct an L{stable method of order three, having the (1; 2){Pad�e
approximation to ez as stability function (see [4]). Moreover, for a given rational function R(z)
we can obtain formulae of the family (2), whose stability function is R(z) (see [5]).

6 A numerical experiment with a sti� non{linear problem.

The theoretic study of the non{linear stability properties of the formulae is very di�cult, due
to the rational functions of the stages involved in our methods. So we consider a numerical
experiment with a non{linear sti� problem, y0(x) = f(y(x)), in which f is one{sided Lipschitz
continuous with one{sided Lipschitz constant 0. We know that if u and v are two solutions to such
a problem with initial values given at x0, then for any x � x0 , ju(x)� v(x)j � ju(x0)� v(x0)j
holds. We want to see if the numerical solutions obtained from our methods have a similar
behaviour.

We consider the sti� problem

y0 = �y
q
y2 + 10000 ; y(0) = a ; (32)



whose solution is given in terms of the initial condition a by

y(x) =
200 a

�
100 +

p
a2 + 10000

�
e100x�

100 +
p
a2 + 10000

�2
e200x � a2

: (33)

It is easy to show that the true solutions are contractive, and after a short transient they are
virtually identical to the steady{state solution y(x) = 0 (the solution of (33) when a = 0).

When we apply the A{stable formula to this problem with �xed step h = 0:1 for a range
of values of a we get Figure 1. The numerical solutions we obtain do not have a contractive
behaviour. However, it is clear that the numerical solutions have a good qualitative behaviour.

Applying the L{stable method to the same problem, for a range of values of a and with �xed
step h = 0:1, we get Figure 2. Now the numerical solutions are contractive, at least for x big
enough. In fact, when jaj < 70 (with �xed step h = 0:1) they seem to be contractive for x � 0.

For �xed h and a, the L{stable method is better than the A{stable from a qualitative point
of view (the numerical solutions go faster to zero and show a better contractivity behaviour).
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Figure 1: y0 = �y (y2 + 10000)1=2 ; y(0) = a ;

h = 0:1 ; x 2 [0; 4] . Numerical solutions for
a = �200;�150;�100;�50; 50; 100; 150; 200
with the A{stable method.
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Figure 2: y0 = �y (y2 + 10000)1=2 ; y(0) = a ;

h = 0:1 ; x 2 [0; 2] . Numerical solutions for
a = �200;�150;�100;�50; 50; 100; 150; 200
with the L{stable method.
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