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Stochastic Elliptic Problems

Strong form: given f(x) ∈ L2(D), find the stochastic function u(x, ω) : D̄ × Ω→ R
such that for a.e. ω ∈ Ω{ −∇ · (a(x, ω)∇u(x, ω)) = f(x) in D,

u(x, ω) = 0 on ∂D, (1)

where the coefficient a(x, ω) could be, e.g., the permeability or conductivity field
involving uncertainty.
§Alexandra Foley, Can you use heat transfer to predict migration of contaminants?, COMSOL BLOG, 2013.
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Existence and Uniqueness

Weak form: given f(x) ∈ L2(D), seek u(x, ω) ∈ H1
0(D) such that

E
[∫

D

a∇u · ∇vdx
]

= E
[∫

D

fvdx

]
∀v ∈ H1

0(D), (2)

where H1
0(D) = L2(Ω;H1

0 (D)) is the stochastic Sobolev space.

If the stochastic coefficient a(x, ω) satisfies the integrability condition

1
amin(ω) ∈ L

2(Ω) and amin(ω) > 0 for a.e. ω ∈ Ω,

there exists a unique weak solution of (2), and the following estimate hold

‖u‖H1
0(D) ≤ CD

∥∥∥∥ 1
amin(ω)

∥∥∥∥
L2(Ω)

‖f‖L2(D),

where amin(ω) = min
x∈D̄

a(x, ω) and CD is the constant of Poincaré’s inequality.
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Representations of Random Fields

Log-normal coefficient: a(x, ω) = eg(x,ω) satisfies the integrability condition§, where
g(x, ·) is a zero mean Gaussian random variable with Covg(x, y) = σ2e−

‖x−y‖
λ .

Truncated Karhunen-Loève expansion: g(x, ω) =
∑M

m=1

√
λmφm(x)Xm(ω), where the

truncation number M is proportional to the smoothness of Covg(x, y).
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Covg(x, y) = 0.1× e−
|x1−y1|+|x2−y2|

0.2 on D = [0, 1]2

§J. Charrier, Strong and weak error estimates for elliptic PDE with random coefficients, SIAM J.N.A., 2012.
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Representations of Random Fields - Continued
Grid-based representation§: given {xi ∈ D̄}Ni=1 and positive-definite covariance matrix
Gg = (Covg(xi, xi))Ni,j=1 = ΘΘT , then

(a(x1, ω), . . . , a(xN , ω))T = eΘ(X1(ω),...,XN (ω))T , Xi(ω) iid∼ N(0, 1).

• GBR represents a(x, ω) exactly on gird nodes while KLE with truncation error.
• The dimension of r.v.s in GBR varies w.r.t. mesh size while KLE stays the same.
• KLE is cheaper than GBR on fine meshes but more expensive on coarse meshes.
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Covg(x, y) = 0.1× e−
|x1−y1|+|x2−y2|

0.2 on D = [0, 1]2

§I.H. Sloan et al, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications, JCP, 2011.
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Cost of KLE for one Realization
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Cost of GBR for one Realization
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Stochastic Optimal Control Problems
Feedback control problems

Structure of SOCPs involves: state variables, control variables, an objective or cost
functional and constraints.
SOCPs: find state and control variables (u, f) that minimize(or maximize) the objective
functional J (u, f) subject to the constraints G(u, f) = 0 are satisfied.
§M. D. Gunzburger et al. An algorithmic introduction to numerical methods for PDEs with random inputs, BCAM, 2013.
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Optimal Control Problem Governed by Elliptic SPDEs
Given a deterministic target function U(x) ∈ L2(D), find the optimal robust control
f opt(x) ∈ A ⊂ L2(D) such that the objective functional

Jβ (u, f) = E
[

1
2

∫
D

|u(x, ω)− U(x)|2dx
]

+ β

2

∫
D

|f(x)|2dx (3)

subject to the elliptic SPDE{
−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D,
u(x, ω) = 0 on ∂D,

is minimized. Our quantity of interest (QoI) is the expected value E[uopt].

Let A be a closed convex subset, there exists a unique optimal solution pair
(uopt, f opt) ∈ H1

0(D)×A of the stochastic optimal control problem

Minimize (3) subject to state equation (1)§. (4)

§J. Lee, Analyses and Finite Element Approximation of Stochastic Optimal Control Problems Constrained by Stochastic Elliptic
PDEs, Iowa State University, 2008.
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Surrogate Model

For numerical implementation, we adopt following surrogate model with Monte Carlo
approximation of problem (4) to realize a gradient-based optimization algorithm later:

minimize Ĵβ(u, f) = 1
2N

N∑
i=1

∫
D

|u(x, ωi)− U(x)|2dx+ β

2

∫
D

|f(x)|2dx (5)

subject to
{ −∇ · (a(x, ωi)∇u(x, ωi)) = f(x) in D
u(x, ωi) = 0 on ∂D for i = 1, ..., N, (6)

where our QoI E[uopt] is approximated by EN [uopt] = 1
N

N∑
i=1

uopt(x, ωi).

For any N ∈ Z+ and for uopt ∈ H1
0(D) satisfying ∂E[uopt]

∂x
= E[ ∂u

opt

∂x
], there holds

‖EN [uopt]− E[uopt]‖H1
0(D) ≤

√
CD
N

∥∥∥∥ 1
amin(ω)

∥∥∥∥
L2(Ω)

‖f opt‖L2(D).
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Euler-Lagrange Equations
Introducing the Lagrangian functional of problem (5-6),

L(u, f, ξ) = Ĵβ(u, f)− 1
N

N∑
i=1

ai(ui, ξi) + 1
N

N∑
i=1

(f, ξi)

that defined for arbitrary (ui, f, ξi) ∈ H1
0 (D)×A×H1

0 (D), i = 1, . . . , N , where

(f, ξi) =
∫
D

f(x)ξ(x, ωi)dx, ai(ui, ξi) =
∫
D

a(x, ωi)∇u(x, ωi) · ∇ξ(x, ωi)dx,

the equivalent system of problem (5-6) is given by: find (uopti , f opt) ∈ H1
0 (D)⊗ L2(D),

i = 1, . . . , N , such that{
ai(uopti , vi) = (f opt, vi) ∀vi ∈ H1

0 (D) for i = 1, . . . , N, (state eqns)
ai(ξopti , ζi) = (uopti − U, ζi) ∀ζi ∈ H1

0 (D) for i = 1, . . . , N, (adjoint eqns)
(βf opt + 1

N

∑N

i=1 ξ
opt
i , z) = 0 ∀z ∈ A,

where our QoI is approximated by EN [uopt] = 1
N

N∑
i=1

uopti .
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A Descent Direction for the Control Variate
Since the optimal solution of problem (5-6) satisfies

L(uopt, f opt, ξopt) ≤ L(uopt, g, ξopt) ∀g ∈ A§,
given fold, the descent direction could be constructed via the convex combination

fnew = εg + (1− ε)fold for some ε ∈ (0, 1) and g ∈ A,

such that L(uold, fnew, ξold) ≤ L(uold, fold, ξold). By letting ε→ 0+, we have∫
D

(g − fold)(βfold + 1
N

N∑
i=1

ξ
(i)
old )dx ≤ 0.

Then, by choosing g − fold = −t(βfold + 1
N

∑N

i=1 ξ
(i)
old ), we derive

fnew = fold − s(βfold + 1
N

N∑
i=1

ξ
(i)
old ),

where s = εt > 0 is chosen to be a small stepsize.
§M. D. Gunzburger et al, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM
J.C.O., 1996.
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Multi-level Monte Carlo Method
Notations: suppose our QoI is E[Q] where Q(x, ω) solves a given problem, let Q`(x, ω)
denote the FE approximation of Q(x, ω) on mesh T`, and Q(i)

` (x) the corresponding
realization Q`(x, ω(i,`)) for i = 1, . . . , N` and ` = 0, . . . , L.

Single-level Monte Carlo: given the mesh TL and r.v.s {ω(i,L)}NLi=1, SLMC gives

Q̂SLL = 1
NL

NL∑
i=1

Q
(i)
L with ‖MSE(Q̂SLL )‖ ≤ ‖V [QL]‖

NL
+ ‖(E [QL]− E [Q])2‖.

Multi-level Monte Carlo: given meshes {T`}L`=0 and r.v.s {ω(i,`)}N`,Li=1,`=0, MLMC gives

Q̂ML
L = 1

N0

N0∑
i=1

Q
(i)
0 +

L∑
`=1

1
N`

N∑̀
i=1

(Q(i)
` −Q

(i)
`−1),

with ‖MSE(Q̂ML
L )‖ ≤ ‖V [Q0]‖

N0
+

L∑
`=1

‖V [Q` −Q`−1]‖
N`

+ ‖(E [QL]− E [Q])2‖.
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Multi-level Monte Carlo Method - Continued

Instead of generating all realizations on one fixed mesh, MLMC uses hierarchical meshes

E[Q] = E[Q0] +
L∑
`=1

E[Q` −Q`−1] + (E[Q]− E[QL]).

Alternatively, one could use quasi-Monte Carlo, collocation rule, etc., for the numerical
approximation of expectations.

Notations: let Q−1 := 0, we define V` := ‖V [Q` −Q`−1]‖ and C` the computational
cost to obtain a single realization Q(i)

` −Q
(i)
`−1 for ` = 0, . . . , L. Moreover, we assume

the discrete error ‖(E [QL]− E [Q])2‖ = O(hαL) for some constant α > 0.

Total computational cost of MLMC:

Tc = N0C0 + · · ·+NLCL.

Computational accuracy of MLMC:

eL = N−1
0 V0 + · · ·+N−1

L VL +O(hαL).
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Sample Size Formulae
Sample size formulae are derived from two optimization perspectives: minimizing the
computational error/cost with given computational complexity/accuracy:

Opt 1 :

{
Minimize eL = N−1

0 V0 +N−1
1 V1 + ...+N−1

L VL +O(hαL),

subject to T ∗c = N0C0 +N1C1 + ...+NLCL.
(7)

By solving this integer optimization problem, we derive

N0 =
√
V0

C0
T ∗c√

C0V0 + ...+
√
CLVL

and Ni = Nj

√
Cj
Ci
· ViVj

for 0 ≤ i 6= j ≤ L.

Opt 2 :

{
Minimize Tc = N0C0 +N1C1 + ...+NLCL,

subject to e∗L −O(hαL) = N−1
0 V0 +N−1

1 V1 + ...+N−1
L VL.

(8)

Similarly, we derive

N0 =
√
V0

C0

(√
V0C0 + ...+

√
VLCL

e∗L −O(hαL)

)
and Ni = Nj

√
Cj
Ci
· ViVj

for 0 ≤ i 6= j ≤ L.
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MLMC Analyses

WLOG, let the sequence of triangulations {T`}L`=0 satisfies the subdivision strategy
which leads to h` = 2−1h`−1 for ` = 1, . . . , L, suppose the following assumptions§

A1. V` =

{
‖V[Q0]‖ = c0,

‖V[Q` −Q`−1]‖ = O(hβ` ) for ` = 1, . . . , L,

A2. C` = O(h−γ` ) for ` = 0, . . . , L.

hold for some positive constants β and γ, then for 1 ≤ i < j ≤ L,

Nj
Ni

=
√
Ci
Cj
· VjVi

=
(
hj
hi

) β+γ
2

= 2−
(j−i)(β+γ)

2 < 1, (9)

which implies that the finer the mesh is, the fewer the realizations we need to compute.

Now note that, the sample size of initial level could be determined by C0, V0 and V1
defined on coarse meshes by low cost, while the others could be derived via (9).
§M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, 2015.
§S. Pauli et al, Determining optimal multilevel Monte Carlo parameters with application to fault tolerance, CMA, 2015.
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Total Cost of SLMC
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Total Cost of MLMC
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2D Stochastic Optimal Control Problem

Given a deterministic target function U(x) = sin(2πx)(cos(2πy)− 1) and β = 10−4,
find the optimal solution pair (uopt, f opt) ∈ H1

0(D)⊗ L2(D) such that

Ĵβ (u, f) = 1
2N

N∑
i=1

∫
D

|u(x, ωi)− U(x)|2dx + β

2

∫
D

|f(x)|2dx

subject to the stochastic elliptic PDEs{
−∇ · (a(x, ωi)∇u(x, ωi)) = f(x) in D = [0, 1]2
u(x, ωi) = 0 on ∂D for i = 1, ..., N,

is minimized, where the coefficient a(x, ω) = eg(x,ω) is given as before.

Using 4-level grids {h` = 2−`−2}3`=0, the MLMC approximation of E[uopt] is given by

E
[
uopt3
]

= 1
N0

N0∑
i=1

u
opt,(i)
0 +

3∑
`=1

1
N`

N∑̀
i=1

(uopt,(i)` − uopt,(i)`−1 ).
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Representations of Random Fields Again
In order to utilize the characteristics of GBR, we use the following 7 points quadrature
rule of order 3 that defined on a reference triangle with vertices (0, 0), (1, 0) and (0, 1).

weight 9/40 1/40 1/40 1/40 1/15 1/15 1/15
coordinate (1/3, 1/3) (1, 0) (0, 1) (0, 0) (0, 1/2) (1/2, 0) (1/2, 1/2)
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Nested quadrature points from nested finite element spaces.
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Sensitive Analysis
Two key observations:

• the optimal solution uopt(x, ω) of surrogate model problem (5-6) solves elliptic
problem (1) with a particular right hand side f opt(x), while uite(x, ω) with f ite(x)
during the iterations,

• it is cheaper/easier to determine the parameters α, β, γ numerically/theoretically
for elliptic problem than the optimal control problem.

Inspiration: use the parameters of state constraint for the optimal control problem.
The parameters of state problem are numerically determined with various RHSs:

Smooth functions : f(x) =

{
sin(x) cos(y) in D = [0, 1]2,
x2 + y2 in D = [0, 1]2,
ex+y in D = [0, 1]2.

(10)

Non-smooth functions : f(x) = σ

K∑
k=1

1√
Vk
χk(x)Xk(ω) in D = [0, 1]2. (11)

§J. Charrier et al, Finite element analysis of elliptic PDEs with random coefficients and its application to multilevel Monte
Carlo methods, SIAM J.N.A., 2013.
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Sensitive Analysis - Smooth Functions
β almost doesn’t change w.r.t. smooth RHSs (10) when the same coefficient is provided.

f(x) in certain norm β w.r.t. different norm
‖·‖L2 | · |H1 ‖·‖L∞ ‖·‖L2 | · |H1 ‖·‖L∞

sin(x) cos(y) 0.45 0.78 0.84 2.00 1.26 1.59

x2 + y2 0.79 1.63 1.99 2.00 1.28 1.61

ex+y 3.19 4.52 7.34 1.98 1.32 1.62
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Sensitive Analysis - Non-smooth Functions
For discontinuous RHSs (11) with different amplitudes σ and random inputs {Xk(ω)}Kk=1,
β almost doesn’t change as well when the same coefficient is provided.

E[β] V[β]
‖·‖L2 | · |H1 ‖·‖L∞ ‖·‖L2 | · |H1 ‖·‖L∞

σ1 = 3.2
√

2 2.02 1.30 1.65 7.37× 10−6 8.46× 10−6 1.89× 10−5

σ2 = 16
√

2 2.02 1.30 1.65 1.83× 10−4 2.12× 10−4 4.56× 10−4

σ3 = 32
√

2 2.02 1.30 1.65 8.20× 10−4 9.18× 10−4 1.53× 10−3
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Sensitive Analysis - Non-smooth Functions

Furthermore, some sensitive analysis results for the parameter γ are given as follows.

E[γ] V[γ]
CPU time Tic-Toc time CPU time Tic-Toc time

σ1 = 3.2
√

2 1.95 1.97 1.29× 10−2 3.56× 10−3

σ2 = 16
√

2 1.97 1.97 1.06× 10−2 3.26× 10−3

σ3 = 32
√

2 1.91 1.96 1.39× 10−2 2.46× 10−3

Observation: the value of γ roughly equals to the dimension of problem in our case.

Conclusion: given that V[β] and V[γ] are small, the values of β and γ would be very
stable if f(x) varies in a certain range for both smooth and non-smooth functions.

Application: in surrogate model problem (5-6), the RHSs of both state and adjoint
equations vary along with the iterations. Then by our conclusion, the parameters β and
γ of our surrogate model problem are stable when the same coefficient is provided and
can be numerically obtained via sensitive analysis.
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Realizations of a(x, ω), uini(x, ω) and uopt(x, ω)
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Opt 1: MLMC vs SLMC
WLOG, given the total cost T ∗c = 1.7× 102 seconds of tic-toc time, we have

Sample sizes w.r.t. Opt 1

NML
0 NML

1 NML
2 NML

3 NSL
3

‖·‖L2 480 130 50 20 40
| · |H1 400 130 60 25 40
‖·‖L∞ 440 140 60 20 40

Optimal errors w.r.t. Opt 1

eML
3 − CFhα3 eSL3 − CFhα3 ratio

‖·‖L2 (×10−4) 1.63 6.96 23.45%

| · |H1 (×10−3) 1.93 5.42 35.69%

‖·‖L∞(×10−4) 7.45 24.31 30.67%
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Opt 1: MLMC vs SLMC - Continued
Optimal control results w.r.t. Opt 1

Ĵ ini
β

Ĵ opt
β ratio

‖·‖L2 | · |H1 ‖·‖L∞ ‖·‖L2 | · |H1 ‖·‖L∞

MLMC(×10−2) 23.06 1.18 1.17 1.18 5.13% 5.08% 5.11%

SLMC(×10−2) 23.06 0.98 0.98 0.98 4.26% 4.26% 4.26%

E[uoptMLMC], E[uoptSLMC] and target function U(x) w.r.t. ‖ · ‖L2 norm
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Opt 2: MLMC vs SLMC
WLOG, given the objective accuracy e∗3 −O(hα3 ) = 8.4× 10−4, we have

Sample sizes w.r.t. Opt 2

NML
0 NML

1 NML
2 NML

3 NSL
3

‖·‖L2 120 30 10 5 35
| · |H1 1200 360 120 40 260
‖·‖L∞ 500 120 40 15 115

Optimal workload w.r.t. Opt 2

TML
c TSLc ratio

‖·‖L2 (×101) 6.19 16.42 37.71%

| · |H1 (×102) 7.54 12.51 60.24%

‖·‖L∞(×102) 2.77 5.60 49.34%
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Opt 2: MLMC vs SLMC - ‖ · ‖L2 Norm
Optimal control results w.r.t. Opt 1

Ĵ ini
β

Ĵ opt
β ratio

‖·‖L2 | · |H1 ‖·‖L∞ ‖·‖L2 | · |H1 ‖·‖L∞

MLMC(×10−2) 23.06 1.18 1.21 1.20 5.12% 5.25% 5.21%

SLMC(×10−2) 23.06 0.96 0.98 0.97 4.15% 4.23% 4.22%

E[uoptMLMC], E[uoptSLMC] and target function U(x) w.r.t. ‖ · ‖L2 norm
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Concluding Remarks

• MLMC inherits the advantage of Monte Carlo method as being insensitive to
the dimension of probability space.

• MLMC performs most simulations with low accuracy at a low cost, with relatively
few simulations being performed at high accuracy and a high cost.

• By applying a grid-based representation to the stochastic coefficient, the dimen-
sionality of random fields in our MLMC scheme is also a multilevel type, which
further reduces the computational cost and avoids the truncation error in KLE.

• The stability of parameters is verified via sensitivity test, which indicates the
applicability of the MLMC formulas for our stochastic optimal control problem.

• The idea using the parameters of state constraint for the optimization problem
is shown to be an economical and reliable approach. This can be a contribution
that is potentially applicable to other optimal control problems with different
objective functionals and state equations.

• Theoretical verification of MLMC assumption, preconditioned conjugate gradient
method and optimal choices of parameters will be carried out in the future.
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