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Recall that in Bayesian inference we build up an 
inferential model by specifying a prior and a likelihood.
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Likelihoods model the measurement process  
and are most naturally specified generatively.
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This generative decomposition allows us  
to focus on modular modeling components.
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Many of  the most common and useful  
modeling techniques are forms of  regression.
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Foundations of  Regression

y

x



Often the data naturally separates  
into variates, y, and covariates, x.

D ! {y, x}



Regression models the statistical relationship  
between the variates and the covariates.
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We typically assume that the covariates are  
independent of  the model parameters.
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In which case the likelihood becomes a model  
of  the variates conditional on the covariates.
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In which case the likelihood becomes a model  
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Covariates are often restricted to a single effective 
parameter through a deterministic mapping.
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This immediately generalizes to  
multiple effective parameters.
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Linear Models



When an effective parameter is unconstrained  
we can model it with a linear mapping.

f(x,↵,�) = � · x+ ↵



Multiple covariates are commonly  
encapsulated in a design matrix.

f(x,↵,�) =
X
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When the measurement model is Gaussian we  
recover the ubiquitous Gaussian-Linear model.

⇡(y|X,↵,�,�) = N
�
y|XT� + ↵,�

�
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Given enough data, linear models are over- 
constrained and all the slopes can be fit well.
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constrained and all the slopes can be fit well.



y

x

When there are fewer data than covariates, however, 
 linear models are subject to collinearity.
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In collinearity some of  the slopes are fully determined 
while the others are completely undetermined.



Consequently (weakly) informative priors are  
critical for building robust linear models.
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Consequently (weakly) informative priors are  
critical for building robust linear models.
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As with the linear model parameters, prior  
information for the Gaussian noise is critical.

⇡(�) = Half-Cauchy(0, ⌧)
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As with the linear model parameters, prior  
information for the Gaussian noise is critical.



General Linear Models
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Constrained effective parameters are  
not amenable to linear models.

XT� + ↵ 2 (�1,1)
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But we can generalize linear  
models with a link function.

✓ 2 (a, b)

g(XT� + ↵) 2 (a, b)



In the statistics literature link functions  
are defined by the un-constraining map.

g�1 : (a, b) ! (�1,1)



While bounded parameters are modeled  
with the logit link function.

logit : (0, 1) ! (�1,1)

logistic
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While bounded parameters are modeled  
with the logit link function.
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Success/failure data subject to covariates can be modeled 
with generalized binomial/Bernoulli models.

⇡(y|X,↵,�) =

Ber

�
y|logistic

�
XT� + ↵
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Positive parameters are modeled  
with the log link function.

exp
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�
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Positive parameters are modeled  
with the log link function.

ex
p 

(X
T  `

 +
 _

)

XT ` + _



Count data whose rate depends on covariates can  
be modeled with a generalized Poisson model.

Poisson

�
y| exp

�
XT� + ↵
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⇡(y|X,↵,�) =



In some applications the Poisson  
likelihood is too restrictive.

E[y] = �

Var[y] = �

Poisson(y|�)



But we can incorporate overdispersion with a  
generalized negative binomial model.

NegBin2(y|µ,�)

Var[y] = µ+ µ2/�

E[y] = µE[y] = �

Var[y] = �

Poisson(y|�)



But we can incorporate overdispersion with a  
generalized negative binomial model.
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But we can incorporate overdispersion with a  
generalized negative binomial model.
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But we can incorporate overdispersion with a  
generalized negative binomial model.



Gaussian Processes
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Regression is always limited by our assumption of  a 
functional relationship between variates and covariates.
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Regression is always limited by our assumption of  a 
functional relationship between variates and covariates.
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Nonparametric regression attempts to overcome this 
limitation by modeling entire spaces of  functions.
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Nonparametric regression attempts to overcome this 
limitation by modeling entire spaces of  functions.
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Gaussian processes are probability distributions over not 
spaces of  parameters but rather spaces of  functions.

f ⇠ GP(µ(x) , k(x, x0))
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Gaussian processes are probability distributions over not 
spaces of  parameters but rather spaces of  functions.
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Gaussian processes are probability distributions over not 
spaces of  parameters but rather spaces of  functions.



The covariance function defines the smoothness of   
functions supported by a Gaussian process.
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.

f ⇠ GP(µ, k)
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.

f ⇠ GP(µ, k)

f ⇠ GP
�
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.
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A Gaussian likelihood is conjugate to a Gaussian  
process prior, yielding a Gaussian process posterior.
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We can incorporate Gaussian processes into a complex 
likelihood by exploiting its marginalization properties.

f(x) ⇠ GP(µ(x) , k(x, x0))



We can incorporate Gaussian processes into a complex 
likelihood by exploiting its marginalization properties.

f(x) ⇠ GP(µ(x) , k(x, x0))

y ⇠ N (µ,⌃)

µi = µ(xi)

⌃ij = k(xi,xj)
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