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Splitting methods for autonomous and non-autonomous perturbed
systems

S. Blanes

Universidad Politécnica de Valencia, Spain

An important number of differential equations originated from as diverse research areas as celestial mechanics,
quantum mechanics, Hybrid Monte Carlo, parabolic problems or some eigenvalue problems can be considered as
perturbations of problems whose solutions are exactly solvable (or can be easily and accurately approximated).
For the numerical integration of these equations it is usually convenient to solve separately the perturbation and
the dominant part, and then to consider appropriate compositions of their flows. An efficient method for a given
problem must take into account the relevant aspects of the problem. For example:

– The size of the perturbation.
– The accuracy of the desired solution.
– The length of the time integration.
– Is the perturbation exactly solvable? or, can we use a low order numerical approximation for this part?
– Do the flows admit negative time steps? and, can we use complex coefficients having positive real part?
– Is the dominant part explicitly time dependent?
– Etc.
In this talk we present our recent works on the search of methods for these problems (a new way to get the order
conditions, the analysis of the conditions to be solved by the coefficients in each case, and to find the explicit
coefficient for the methods). The performance of the methods is illustrated on several numerical examples.
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Computing Operator Determinants and Preconditioning
Riemann-Hilbert Problems – A Numerical Analyst’s Encounter with

Mathematical Physics

F. Bornemann

Technische Universität München, Germany

The numerical evaluation of operator determinants, originally born out of an attempt to validate some highly
structured differential equations calculations, has become a popular tool in areas of Mathematical and Theoretical
Physics dealing with integrable systems; e.g., it was recently used by S. Nishigaki to calculate the ’pion decay
constant’ of certain QCD-like theories. We review some of this development, tell an amusing story about the
numerical evaluation of higher-order derivatives and its relation to a problem in graph theory, and end by showing
how all this generalizes to the preconditioning of matrix-valued Riemann-Hilbert problems.
Partly joint work with my PhD student Georg Wechslberger (TU München).
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Plane wave stability of the split-step Fourier method for the
nonlinear Schrödinger equation

L. Gaucklera, E. Faoub and Ch. Lubichc

a Technische Universität Berlin, Germany
b INRIA & ENS Cachan Bretagne & ENS Paris, France
c Universität Tübingen, Germany

The cubic nonlinear Schrödinger equation has solutions that are plane waves. In the talk we will discuss the
stability of these solutions and the stability of their numerical approximation.

We first study the stability of plane waves in the exact solution. We show orbital stability of plane waves over
long times. In the second part of the talk we study a very popular method for the numerical discretization of the
nonlinear Schrödinger equation, the split-step Fourier method. This method combines a Fourier spectral method
in space with a splitting integrator in time. We will pursue the question whether the stability of plane waves in
the exact solution transfers to this numerical discretization.

References

[1] E. Faou, L. Gauckler and Ch. Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear
Schrödinger equation on a torus, Comm. Partial Differential Equations, 38 (2013), pp. 1123-1140.

[2] E. Faou, L. Gauckler and Ch. Lubich, Plane wave stability of the split-step Fourier method for the nonlinear
Schrödinger equation, preprint, arXiv:1306.0656.
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Convergence of an ADI splitting for Maxwell’s equations

M. Hochbruck, T. Jahnke and R. Schnaubelt

Karlsruhe Institute of Technology, Germany

Maxwell’s equations provide the foundation for the theory of electromagnetism, and solving these equations
numerically is an important task in many applications. For problems posed on a cuboid or on R3, the alternating
direction implicit method proposed by Zheng, Chen, and Zhang (2000) is particularly attractive, because this
method is unconditionally stable and computationally cheap. The main idea is, roughly speaking, to decompose
the Maxwell operator in such a way that the sub-flows can be propagated in a stable and efficient way.
In this talk, second-order convergence for the semi-discretization in time is shown in the framework of operator
semigroup theory. The proof is based on results concerning the regularity of the Cauchy problems of the sub-flows,
which then allow to apply an abstract convergence proof by Hansen and Ostermann [1].
Before the error analysis, well-posedness of Maxwell’s equations on cuboids and on R3 will be discussed.
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[1] E. Hansen and A. Ostermann, Dimension splitting for evolution equations, Numerische Mathematik, 108
(2008), pp. 557–570.
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On solving highly oscillatory ODE problems

A. Murua

Universidad del País Vasco, Spain

In this talk, we are interested in studying the solutions of highly oscillatory systems of ordinary differential
equations and constructing and analyzing numerical integrators for such problems. We present the approach
developed in [1, 2, 3, 4, 5], where standard combinatorial-algebraic tools for analysing numerical integrators for
non-oscillatory ODEs are adapted to the highly oscillatory context. We explore in which extent our approach
for analysing the solutions of highly oscillatory problems can by used to construct actual numerical integrators
tailored for such problems by treating in some detail several examples that fit in our framework.

References

[1] Ph. Chartier, A. Murua and J.M. Sanz-Serna, Higher-Order averaging, formal series and numerical integra-
tion I: B-series, Found. Comput. Math. 10, 695–727 (2010).

[2] Ph. Chartier, A. Murua and J.M. Sanz-Serna, Higher-Order averaging, formal series and numerical integra-
tion II: the quasi-periodic case, Found. Comput. Math. 12, 471–508 (2012).

[3] Ph. Chartier, A. Murua and J.M. Sanz-Serna, A formal series approach to averaging: exponentially small
error estimates, DCDS A 32, 3009–3027 (2012).

[4] Ph. Chartier, A. Murua and J.M. Sanz-Serna, Higher-order averaging, formal series and numerical integra-
tion III: error bounds, submitted.

[5] M.P. Calvo, Ph. Chartier, A. Murua and J.M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and
DAEs, Appl. Numer. Math. 61, 1077–1095 (2011).
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Weighted Essentially Non-Oscillatory limiters for Runge-Kutta
Discontinuous Galerkin Methods

J. Qiu

School of Mathematical Sciences, Xiamen University, China

In the presentation we will describe our recent work on a class of new limiters, called WENO (weighted essentially
non-oscillatory) type limiters, for Runge-Kutta discontinuous Galerkin (RKDG) methods. The goal of designing
such limiters is to obtain a robust and high order limiting procedure to simultaneously obtain uniform high order
accuracy and sharp, non-oscillatory shock transition for the RKDG method. We adopt the following framework:
first we identify the ”troubled cells”, namely those cells which might need the limiting procedure; then we replace
the solution polynomials in those troubled cells by reconstructed polynomials using WENO methodology which
maintain the original cell averages (conservation), have the same orders of accuracy as before, but are less
oscillatory. These methods work quite well in our numerical tests for both one and two dimensional cases, which
will be shown in the presentation.
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Off-Label Uses for ODE Methods: Randomization

R.D. Skeel and Y. Fang

Purdue University, United States

One of the most demanding calculations is to generate a single instance of a point in a high-dimensional con-
figurational space from a specified probability distribution (with an unknown normalizing prefactor). (Being
able to generate a dozen independent samples would solve grand challenge problems, such as protein folding.)
Direct methods for doing this are impractical: one has to resort to using an iterative process known as a Markov
chain Monte Carlo method, which converges only in the limit to the prescribed distribution. Such methods crawl
through configuration space step by step, with acceptance of a step based on a Metropolis(-Hastings) criterion.
An acceptance rate of 100% is possible in principle by embedding configuration space in a higher-dimensional
phase space and using ODEs. In practice, numerical integrators must be used, lowering the acceptance rate, but
at the same time allowing long moves. This is the essence of hybrid Monte Carlo methods. Presented is a general
framework for constructing such methods under relaxed conditions.
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Computational Methods for Bayesian Inverse Problems

A. Stuart

University of Warwick, United Kingdom

Many problems in the physical sciences require the determination of an unknown field from a finite set of
indirect measurements. Examples include oceanography, oil recovery, water resource management and weather
forecasting. The Bayesian approach to these problems is natural for many reasons, including the under-determined
and ill-posed nature of the inversion, the noise in the data and the uncertainty in the differential equation models
used to describe complex mutiscale physics. The object of interest in the Bayesian approach is the posterior
probability distribution on the unknown field.
However the Bayesian approach presents a computationally formidable task as it results in the need to probe a
probability measure on function space. The talk will start by briefly overviewing the state-of-the-art in MCMC
methods for the exploration of such probability measures [1]. It will then highlight two classes of methods which
aim to simplfy the computational task based on approximating the probability measure by a Dirac measure or
by a Gaussian. The motivation for doing this is partly related to the idea of Bayesian posterior consistency: the
fact that, in the large data or small noise limits, the posterior distribution concentrates near the true value of
the unknown field underlying the data [2].
The idea of approximating the posterior measure by a Dirac is the maximum a posteriori (MAP) estimator which,
in words, computes the mostly likely point under the posterior probability distribution. It will be shown how to
make sense of this idea in infinite dimensions, resulting in a problem from the calculus of variations; posterior
consistency of the MAP estimator will also be studied [3]. We will then study approximation of the posterior
measure by a Gaussian, looking for the closest Gaussian with respect to the Kullback-Leibler divergence. Again
we show how to make sense of this in infinite dimensions, and we describe computational methods for the problem,
based on the Robbins-Monro algorithm [4].

References

[1] S.L. Cotter, G.O. Roberts, A.M. Stuart and D. White, MCMC methods for functions: modifying old algo-
rithms to make them faster, Statistical Science, to appear. http://arxiv.org/abs/1202.0709
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inverse problems, Stochastic Processes and Applications, to appear. http://arxiv.org/abs/1203.5753
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[4] F.J. Pinski, G. Simpson, A.M. Stuart and H. Weber, Kullback-Leibler approximations for measures on infinite
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Minisymposia Talks





MS01 – Molecular Dynamics
Organized by: Benedict Leimkuhler and Carsten Hartmann

On the use of Bayes theorem for estimating free energies from
adaptively biased simulations

M. Athènes, L. Cao, M.C. Marinica, G. Stoltz and T. Lelièvre

CEA Saclay, Service de Recherches de Métallurgie Physique, France

An important task of molecular simulation is the computation of free energy profiles A(ζ) where ζ is a control
parameter acting on a multi-particle system. Among free-energy techniques, adaptive methods introduce an
external bias to minimize the time spent sampling regions of the free energy that have already been visited. The
time-dependent bias may be added to the potential or to the force governing the dynamics. We show how the
biasing force can be efficiently constructed using an extended form of Bayes theorem.

A meshfree discretization of optimal control problems with
applications in Molecular Dynamics

R. Banisch and C. Hartmann

Freie Universität Berlin, Germany

Rare but important transition events between long lived states are a key feature of many molecular systems. In
many cases the computation of rare event statistics by direct molecular dynamics (MD) simulations is infeasible
even on the most powerful computers because of the immensely long simulation timescales needed. Recently a
technique for spatial discretization of the molecular state space designed to help overcome such problems, so-
called Markov State Models (MSMs), has attracted a lot of attention. We introduce a novel approach to using
MSMs for the efficient solution of optimal control problems that appear in Molecular Dynamics applications
where one desires to optimize molecular properties by means of external controls. The discretization is both
meshfree and structure-preserving. It will be illustrated with some numerical examples.
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Structure preserving integration of constrained multirate systems

S. Leyendeckera and S. Ober-Blöbaumb

a Chair of Applied Dynamics, University of Erlangen-Nuremberg, Germany
b University of Paderborn, Germany

Mechanical systems with dynamics on varying time scales, e.g. including highly oscillatory motion, impose chal-
lenging questions for numerical integration schemes. Tiny step sizes are required to guarantee a stable integration
of the fast frequencies. However, for the simulation of the slow dynamics, integration with a larger time step is
accurate enough. Here, small time steps increase integration times unnecessarily, especially for costly function
evaluations. For systems comprising fast and slow dynamics, multirate methods integrate the slow part of the
system with a relatively large step size while the fast part is integrated with a small time step [1, 2]. A particular
challenge is the treatment of the coupling between slow and fast dynamics, e.g. via potentials or holonomic
constraints. In this talk, a multirate integrator is derived in closed form via a discrete variational principle,
resulting in a symplectic and momentum preserving multirate scheme [3].

References

[1] M. Arnold, Multi-rate time integration for large scale multibody system models, in: IUTAM Symposium on
Multiscale Problems in Multibody System Contacts, edited by P. Eberhard, Stuttgart, Germany (2007),
pp. 1–10.

[2] A. Stern and E. Grinspun, Implicit-explicit variational integration of highly oscillatory problems, Multiscale
Model. Simul., 7 (2009), pp. 1779–1794.

[3] S. Leyendecker and S. Ober-Blöbaum, A variational approach to multirate integration for constrained systems,
in: Multibody Dynamics, Computational Methods in Applied Sciences edited by J.C. Samin, P. Fisette, 28
(2013), pp. 97–121.

Robust and efficient configurational molecular sampling via
Langevin Dynamics

Ch. Matthews and B. Leimkuhler

University of Edinburgh, United Kingdom

Efficient algorithms are of paramount importance in computationally-intensive disciplines such as molecular
dynamics. In this talk, we compare a wide variety of numerical methods for solving the stochastic differential
equations often encountered in molecular dynamics. We analyse methods based on the application of deterministic
impulses, drifts, and Brownian motions in some combination. In computed simulations of alanine dipeptide (both
solvated and unsolvated), higher accuracy is obtained without loss of computational efficiency, while allowing
large timestep, and with no impairment of the conformational sampling rate. Efficiency improvements of 25%
or more in practical timestep size are achieved in vacuum, and with reductions in the error of configurational
averages of a factor of ten or more attainable in solvated simulations at large timestep.
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Mathematical analysis of accelerated dynamics

T. Lelièvre

CERMICS, École des Ponts Paris Tech, France

We will present some mathematical analysis of accelerated dynamics techniques which have been proposed by
A.F. Voter in the late nineties: the parallel replica method, the hyperdynamics and the temperature accelerated
dynamics. The analysis strongly relies on the notion of quasi-stationary distribution.
These are joint works with D. Aristoff, C. Le Bris, M. Luskin, F. Nier and D. Perez.

References

[1] D. Aristoff and T. Lelièvre, Mathematical Analysis of Temperature Accelerated Dynamics, in preparation.

[2] C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica
dynamics, MCMA, 18(2), 119-146, (2012).

[3] T. Lelièvre and F. Nier, Low temperature asymptotics for Quasi-Stationary Distribution in a bounded domain,
in preparation.

Linear response theory and optimal control for a molecular system
under nonequilibrium conditions

H. Wanga, C. Hartmanna and C. Schuetteb

a Freie Universität Berlin, Germany
b Freie Universität Berlin & Zuse Institute Berlin, Germany

In this talk, we propose a straightforward generalization of linear response theory to systems in nonequilibrium
that are subject to nonequilibrium driving. We briefly revisit the standard linear response result for equilibrium
systems, where we consider Langevin dynamics as a special case, and then give an alternative derivation using a
change-of-measure argument that does not rely on any stationarity or reversibility assumption. This procedure
moreover easily enables us to calculate the second order correction to the linear response formula (which may or
may not be useful in practice). Furthermore, we outline how the novel nonequilibrium linear response formula
can be used to compute optimal controls of molecular systems for cases in which one wants to steer the system
to maximize a certain target expectation value. We illustrate our approach with simple numerical examples.
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Using Coarse Grained Models to Speed Convergence to the
Minimum Energy Pathway

J. Weare, B. Qiu, S. Kale, M. Saunders, B. Roux and A. Dinner

University of Chicago, United States

For large complex systems interrogation of the reaction mechanism by straightforward simulation is often im-
possible due to the presence of a vast range of time scales. For this reason, efficient techniques that focus on
discovery of the reaction pathways are important. Unfortunately in large complex systems discovery of these
pathways can itself be prohibitively expensive. In this work we develop a technique for discovery of the minimum
energy pathway (and other pathwise descriptions of reactions) that uses inexpensive, coarse grained models to
accelerate convergence. In most practical settings the reaction pathway corresponding to the coarse grained
model does not accurately describe the reaction of interest. Nevertheless, by carefully arranging the calculation,
the coarse grained system can be used to accelerate convergence to the MEP of a more expensive, more accurate,
model. We demonstrate the effectiveness of this approach on several test problems.
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MS02 – Recent Trends in Lattice Boltzmann Methods:
Boundary Conditions and Applications

Organized by: Matthias Ehrhardt and Salvador Izquierdo

Introduction to Lattice Boltzmann Method and Recent Trends

A. Bartel and D. Heubes

University of Wuppertal, Germany

In computational fluid dynamics often complex physical fluid properties (like multiphase, multicomponent, chem-
ical reaction, multiphysics) need to be taken into account. Furthermore, boundaries or obstacles with complex
fluid interaction occur. Classically, the Navier-Stokes equations would be needed to be supplemented with cor-
responding mathematical models.
The lattice Boltzmann method (LBM) uses a particle approach in which these complex phenomena can be
relatively easily represented on the basis of particle interaction.
In this talk, the basic ideas of LBM will be explained including boundary conditions. We give a mathematical
interpretation of the algorithms as certain quadrature rules. Furthermore, we report on certain recent trends
such as multiphysical systems, fluid structure interaction and transparent boundaries.

Challenges in boundary conditions for CFD simulations using
lattice Boltzmann methods

S. Izquierdoa and N. Fueyob

a Universidad de Zaragoza and Instituto Tecnológico de Aragón, Spain
b Universidad de Zaragoza, Spain

The lattice Boltzmann (LB) method has reached enough maturity to be an alternative for current industrial
CFD simulations. However, one of the essential points of the method, the boundary conditions, is the subject
of a variety of approaches, which are not always consistent with the target macroscopic equations. We present
a systematic review of these approaches to define boundary conditions in LB methods. Two partially-solved
challenges are analyzed: suppression of reflecting waves in steady and unsteady simulations, and implementation
of Neumann boundary conditions. Based on their conclusions we will discuss how to provide practical solutions
for present challenges, such as the definition of boundary conditions for complex fluids.
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High order boundary conditions for Lattice Boltzmann Schemes

M.M. Tekiteka, F. Duboisb and P. Lallemandc

a University Tunis ElManar, Tunisia
b CNAM, LMSSC, Paris, France
c CNRS, Paris, France

Our communication will be divided into two parts. In the first part, we show that it is possible to get the
macroscopic fluid equations of lattice Boltzmann schemes with an external force using Taylor expansion. In
a second part of our contribution, we validate this general expansion by a detailed application to boundary
conditions.

References

[1] A. Augier, F. Dubois and B. Graille, Rotational invariance of Lattice Boltzmann schemes, 9th ICMMES
Conference, Taipei, July 2012, to appear.

[2] F. Dubois, P. Lallemand and MM. Tekitek, On a superconvergent lattice Boltzmann boundary scheme,
Computers and Mathematics with Applications, p. 2141-2149, 2010.

[3] D. d’Humières, Generalized Lattice-Boltzmann Equations, in Rarefied Gas Dynamics: Theory and Simula-
tions, vol. 159 of AIAA Progress in Aeronautics and Astronautics, p. 450-458, 1992.

[4] D. d’Humières and I. Ginzburg, Multi-reflection boundary conditions for lattice Boltzmann models, Physical
Review E 68 066614, 2003.

Non-Reflecting Boundary Conditions for the Lattice Boltzmann
Method

D. Heubes, A. Bartel and M. Ehrhardt

University of Wuppertal, Germany

In this talk, we present different approaches of non-reflecting boundary conditions for the lattice Boltzmann
method (LBM). One approach is based on a hyperbolic PDE formulation of the fluid’s motion. There Dirichlet
conditions at the artificial boundaries are computed using an analysis of characteristics. Then, the Dirichlet
conditions are transferred to the LBM framework. Our procedure can be seen as a generalized LODI (local one
dimensional inviscid) approach.
In addition, we present our recent results of another approach, where a non-reflecting boundary condition is
directly derived on the discrete level. Under the assumption of a simplified collision operator we compute an
exact boundary condition on the discretized level for a one dimensional setting. This formulation depends on
all previously computed values at the boundary. Based on the exact formulation, we aim at techniques to get
practical and efficient boundary conditions.
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Asymptotic analysis of LB for fluid-structure interaction:
boundaries, forces and coupling schemes

A. Caiazzo

WIAS Berlin, Germany

Recent development of LB schemes offer a variety of algorithms to incorporate different boundary conditions and
deal with the fluid-solid interactions. We discuss some of these issues from the point of view of asymptotic analysis
[1, 2], in particular discussing the consistency of the conditions at the fluid-solid interface for no-slip conditions,
immersed boundary approaches, Lees-Edwards boundaries and force evaluation via Momentum-Exchange [3, 4].
Finally, asymptotic analysis of coupling scheme will be discussed.
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[3] A. Caiazzo, Asymptotic analysis of lattice Boltzmann method for fluid-structure interaction problems PhD
Thesis, SNS Pisa and TU Kaiserslautern (2007).

[4] A. Caiazzo and M. Junk. Boundary Forces in lattice Boltzmann: analysis of Momentum Exchange algorithm,
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Numerical lifting for Lattice Boltzmann models

Y. Vanderhoydonc and W. Vanroose

Universiteit Antwerpen, Belgium

In this contribution we give an overview of various lifting strategies for Lattice Boltzmann models (LBMs).
A lifting operator finds for given macroscopic variables the corresponding distribution functions, mesoscopic
variables of the LBM. There are several applications where macroscopic variables need to be mapped to these
distribution functions. For example, starting a LBM from given macroscopic initial conditions includes some
arbitrariness. The initialization of the LBM then requires a lifting operator. Another application of a lifting
operator is found in coupled LBM and macroscopic partial differential equation (PDE) models, where one part
of the domain is described by a PDE while another part is modeled by a LBM. Such a hybrid coupling results in
missing data at the interfaces between the different models. The lifting operator provides the correct boundary
conditions for the LBM domain at the interfaces. [1] contains an overview of the different lifting strategies.

References

[1] Y. Vanderhoydonc, W. Vanroose, C. Vandekerckhove, P. Van Leemput and D. Roose, Numerical lifting for
Lattice Boltzmann models, chapter in E-book series Progress in Computational Physics, vol. 3, accepted for
publication.
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Lattice Boltzmann Simulations of Soft Matter Interfaces

J. Harting, S. Frijters, F. Günther, B. Kaoui and T. Krüger

TU Eindhoven, Netherlands

Interfaces are ubiquitous in soft matter systems and appear in various shapes and sizes. Prominent examples are
vesicles, capsules, and biological cells. Other classes of fluid-fluid interfaces can be found in emulsions, foams,
and liquid aerosols. We investigate the underlying physical properties of soft matter interfaces by combining
a multiphase lattice Boltzmann solver for the involved fluids with molecular dynamics or immersed boundary
methods to describe (colloidal) particles or deformable membranes. An overview on recent applications will
be given ranging from rheological and structural properties of particle stabilized fluid interfaces and emulsions
towards microfluidic transport of vesicles and biological cells.

References

[1] F. Jansen and J. Harting, Phys. Rev. E. 83, 046707 (2011)

[2] S. Frijters, F. Günther and J. Harting, Soft Matter 8, 2542 (2012)

[3] F. Günther, F. Janoschek, S. Frijters and J. Harting, Computers and Fluids 80, 184-189 (2013)

[4] B. Kaoui, J. Harting and C. Misbah, Phys. Rev. E. 83, 066319 (2011)

[5] B. Kaoui, T. Krüger and J. Harting, Soft Matter 8, 9246 (2012)

[6] B. Kaoui, T. Krüger and J. Harting, Submitted for publication (2012)

Real world CFD applications on GPGPU based LBM with local
grid-refinement

M. Geier, M. Schönherr and M. Krafczyk

TU Braunschweig, Germany

In order for the lattice Boltzmann method to be applicable to real world CFD applications the code needs to be
flexible and efficient at the same time. It has to support off-grid boundary conditions to fit arbitrary geometrical
constrains with a Cartesian mesh and local grid-refinement is necessary to enhance the resolution in areas of higher
gradients. It is essential that grid-refinement and off-grid boundaries work seamlessly and efficiently together. In
this contribution we present an LBM implementation for GPGPUs based on the sparse EsoTwist data structure.
EsoTwist combines streaming and collision into a single step and requires only one set of variables. It allows
for a random access order to the lattice notes and is hence completely thread-safe and suitable for many-core
implementations. Grid-refinement and boundary conditions are designed to be as compact as possible in order
to work efficiently with the EsoTwist data structures without compromising accuracy.
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MS03 – Computational and stochastic methods in inverse
problems

Organized by: Uri Ascher and Sebastian Reich

Stochastic algorithms for inverse problems involving PDEs and
many measurements

U. Ascher, F. Roosta-Khorasani and K. van den Doel

University of British Columbia, Canada

Inverse problems involving systems of partial differential equations (PDEs) and many experiments are very
expensive to solve numerically. The mere evaluation of a misfit function often requires hundreds and thousands
of PDE solves. We develop and assess dimensionality reduction methods, both stochastic and deterministic,
to reduce this computational burden. Highly efficient variants of the resulting algorithms are identified and
demonstrated in the context of the famous DC resistivity and EIT problems.

Mass Conservation and Positivity Preservation with Ensemble-type
Kalman Filter Algorithms

T. Janjic Pfandera, D.B. McLaughlinb, S.E. Cohnc and M. Verlaand

a Hans Ertel Center for Weather Reaserch, DWD, Germany
b Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
c NASA Goddard Space Flight Center, Greenbelt, Maryland, United States
d Deltares/TU Delft, Netherlands

This paper considers incorporation of constraints to enforce physically-based conservation laws in the ensemble
Kalman filter. In particular, equality and inequality constraints are used both to conserve mass and to maintain
positivity through measurement updates. In order to ensure mass conservation, a projection matrix that corrects
for localization effects is constructed. In order to maintain both mass conservation and positivity preservation
through the analysis step, we construct two data assimilation algorithms based on quadratic programming and
ensemble Kalman filtering. We demonstrate the benefits of imposing these constraints in two simple experimental
setups: a solid body rotation experiment and idealized problems of environmental pollution. The results show
clear improvements in both analyses and forecasts, particularly in the presence of localized features.

21



Exploiting Shape Hessians in PDE constrained Shape Optimization

V. Schulz

Trier University, Germany

Shape optimization problems are a special kind of inverse problems which involve a somewhat ”exotic” differential
calculus - especially in the case of PDE constrained shape optimization. Second order computational optimization
methods are rarely applied in that field. In this talk, we discuss, how nevertheless so-called shape Hessians can be
exploited for convergence aceleration and try to pave the way for Newton-like approached based on a Riemannian
interpretation of shape optimization problems.

Can Localization Lift the Curse of Dimensionality for Particle
Filters?

S. Reicha and Y. Chengb

a University of Potsdam & University of Reading, Germany
b University of Potsdam, Germany

The optimal way of incorporating observations into dynamical models, also known as filtering or data assimilation,
can be quite easily done in theory by combining the model dynamics with an application of Bayes’ formula.
Particle methods come into play as a way to approximate the true filtering solution. The downside is that the
number of particles needed to come close to the analytic solution grows exponentially with the model dimension,
which is also known as the curse of dimensionality. This problem can in principle be addressed by the concept of
localization, which takes advantage of the spatial structure of the state space and transforms a global problem
to local problems. This concept has yet to be transferred to particle filters, which we do by using methods from
optimal transportation.

Consistent inference for coarse-grained models from multiscale data

S. Krumscheid, G.A. Pavliotis and S. Kalliadasis

Imperial College London, United Kingdom

Most dynamical systems in the natural sciences are characterized by the presence of processes that occur across
several length and time scales. Examples include the atmosphere-ocean system, biological systems, materials
and molecular dynamics. Typically only the dynamics at the macroscopic scale is of interest. While multiscale
methods (e.g. homogenization) provide the analytical framework for the rigorous derivation of effective coarse-
grained dynamical systems, statistical inference for these multiscale systems (i.e. identifying parameters in the
coarse-grained system from data of the macroscopic component) remains far from being straightforward. In
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particular, standard statistical techniques such as maximum likelihood become biased due to the multiscale
error. In this talk we will introduce a novel class of estimators for multiscale diffusions that do not suffer from
this bias. In addition to presenting rigorous convergence results, we will present several illustrative examples.

A combined registration-segmentation model for filtration
estimation in the kidney

A. Zannaa, E. Hodnelandb and E. Hansona

a Department of Mathematics, University of Bergen, Norway
b Department of Biomedicine, University of Bergen, Norway

In this talk we propose a combined registration-segmentation method for motion correction and parameter esti-
mation for the kidney applied to dynamic contrast-enhanced MR images of the kidney. The motion correction
is performed using normalized gradients as data term in the registration and a Mahalanobis distance from the
segmented phases to a training set to supervise a segmentation. By applying this framework to input 4D im-
age time series we conduct simultaneous motion correction and two-phase segmentation into renal cortex and
background. The resulting time series are then used to estimate kidney perfusion.
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MS04 – Time integration of partial differential equations
Organized by: Alexander Ostermann

Variational discretization of wave equations on evolving surfaces

Ch. Lubich and D. Mansour

Universität Tübingen, Germany

A linear wave equation on a moving surface is derived from Hamilton’s principle of stationary action. The
variational principle is discretized with functions that are piecewise linear in space and time. This yields a
discretization of the wave equation in space by evolving surface finite elements and in time by a variational
integrator, a version of the leapfrog or Störmer–Verlet method. We study stability and convergence of the full
discretization in the natural time-dependent norms under the same CFL condition that is required for a fixed
surface. Using a novel modified Ritz projection for evolving surfaces, we prove optimal-order error bounds.
Numerical experiments illustrate the behavior of the fully discrete method.

A numerical analysis of parabolic differential equations on evolving
surfaces

D. Mansour

Universität Tübingen, Germany

A linear parabolic partial differential equation on a moving surface is discretized in space by the evolving surface
finite element method. Discretization in time is done by implicit Runge–Kutta methods, aiming for higher-order
accuracy in time and unconditional stability of the fully discrete scheme. Thanks to the properties of the spatial
semi-discretization, the latter is established for algebraically stable and stiffly accurate Runge–Kutta methods.
Under sufficient regularity conditions, optimal-order error estimates in the natural time dependent norms are
shown. Numerical experiments are presented to confirm some of the theoretical results.
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Implicit Runge-Kutta schemes and discontinuous Galerkin methods
for Maxwell’s equations

T. Pazur and M. Hochbruck

Karlsruhe Institute of Technology, Germany

Maxwell’s equations can be considered as an abstract initial value problem

u′(t) = Au(t) + f(t), u(0) = u0

on a suitable Hilbert space H. In this talk we first present an error analysis for Gauß and Radau collocation
methods applied to this abstract problem. Our error analysis is based on energy technique discussed in [1]. For
s-stage collocation methods we obtain an order reduction to order s + 1 instead of the classical order 2s and
2s− 1 for Gauß and Radau collocation methods, respectively.
Next we discretize Maxwell’s equations in space using the discontinuous Galerkin method and then apply a
collocation method to integrate the semidiscrete problem in time. We can prove that the full discretization error
is of size O(hp+1/2 + τ s+1), where h denotes maximum diameter of the finite elements and τ denotes the time
step. Finally, we illustrate our theoretical results by numerical experiments.
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Numerical approximation of Turing patterns in a reaction-diffusion
model for electrodeposition

I. Sguraa, D. Lacitignolab and B. Bozzinic

a Department of Mathematics and Physics, University of Salento, Italy
b Electric and Information Engineering Department, University of Cassino and Southern Lazio, Italy
c Innovation Engineering Department, University of Salento, Italy

We describe the dynamics of metal growth by electrodeposition by a reaction-diffusion PDE system that allows
spatial pattern formation through Turing instability [1]. Oscillating Turing patterns arise if a forcing frequency
is applied [2]. Numerical approximation of Turing patterns is a challenging task: high accuracy in space and
long-time integration are needed, in the forced model highly oscillatory solutions are expected. We perform
space semi-discretization by high order finite difference ECDFs. For time discretization, we introduce a test
equation and define its stability region in terms of reaction and diffusion time scales. We present a stability
analysis for Crank-Nicolson, IMEX 2-SBDF, ADI schemes. We approximate both stationary and oscillating
Turing patterns by ADI-ECDF since do not require stepsize restrictions [3, 4]. New results will be presented
related to Turing-Hopf instability, which can yield patterns oscillatory in space and time.

26



References

[1] B. Bozzini, D. Lacitignola, C. Mele and I. Sgura, Coupling of Morphology and Chemistry Leads to Morpho-
genesis in Electrochemical Metal Growth: a Review of the Reaction-Diffusion Approach, Acta Appl. Math.
122 (1) (2012) 53-68

[2] B. Bozzini, D. Lacitignola and I. Sgura, Frequency as the greenest additive for metal plating I. J. Elec. Sc 6
(2011) 4553-4571

[3] I. Sgura, B. Bozzini and D. Lacitignola, Numerical approximation of Turing patterns in electrodeposition by
ADI methods J. Comput. Appl. Math. 236 (2012) 4132-4147

[4] I. Sgura, B. Bozzini and D. Lacitignola, Numerical approximation of oscillating Turing patterns AIP Conf.
Proc 1493 (2012) 896-903

On Schrödinger, Strang and Strichartz

T. Jahnke, M. Hochbruck and R. Schnaubelt

Karlsruhe Institute of Technology, Germany

Exponential operator splitting is a very efficient and well established approach for solving time-dependent
Schrödinger equations. It is well known that the Lie-Trotter splitting and the Strang-Marchuk splitting con-
verge with order 1 and 2, respectively, if the initial data and the potential are sufficiently regular. However, the
necessary regularity assumptions for the potential are too restrictive in many applications.
In this talk, Strichartz estimates are used to prove new error bounds for exponential splitting methods applied
to the linear Schrödinger equation on Rd (with moderate d ∈ N). These error bounds show convergence of
both methods under weaker assumptions, but the classical orders are reduced by a factor which depends on the
regularity of the potential and the dimension d. For smooth potentials, the classical orders of convergence are
recovered.

An investigation of Strang and high order splitting schemes for
Vlasov-type equations

L. Einkemmer and A. Ostermann

University of Innsbruck, Austria

In astro- and plasma physics the behavior of a collisionless plasma is modeled by the Vlasov equation coupled
to an appropriate model of the electromagnetic field. For such a system Strang splitting is the most common
integration method described in the literature.
We provide a rigorous convergence analysis for the Strang splitting scheme in the case of Vlasov-type equations;
this analysis is conducted in an abstract framework which includes the above mentioned applications. In addition,
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we show convergence of a full discretization for the electrostatic case, where this scheme is combined with a
discontinuous Galerkin approximation in space.
Due to the fact that the Strang splitting scheme, in general, is not symmetric, a straightforward extension to
higher order methods, using composition, is not possible. To remedy this, we propose and analyze an explicit
method which retains all favorable properties of the Strang splitting scheme.
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Efficient time integration of the Klein-Gordon equation in the
non-relativistic limit regime

K. Schratz and E. Faou

INRIA Rennes, France

We consider the Klein-Gordon equation in the non-relativistic limit regime, i.e. the speed of light c formally
tending to infinity. Due to the highly-oscillatory nature of the solution in this regime, its numerical simulation
is very delicate. Here we will construct an asymptotic expansion for the exact solution in terms of the small
parameter c−2. We will see that for sufficiently smooth initial values this asymptotic expansion exists up to
an arbitrary order, and can be reconstructed by superposing highly-oscillatory terms to cascaded solutions of c-
independent Schrödinger-like systems. The numerical advantage is that the high-oscillations in the exact solution
can be filtered out explicitly and the numerical task reduces to solving the non-oscillatory Schrödinger-like limit
systems, which can be carried out very efficiently without any additional time-step restriction.

Finite-difference schemes with splitting and discrete TBCs for the
2D Schrödinger equation in a strip

A. Zlotnik

National Research University Higher School of Economics, Moscow, Russian Federation

The splitting technique is widely used to simplify solving of the TD Schrödinger and related equations [1] which
are so important in various fields. We apply the Strang-type splitting in potential to the Crank-Nicolson and
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Numerov-Crank-Nicolson schemes for the 2D TD Schrödinger in a strip with the discrete transparent boundary
conditions (DTBC). We prove the uniform in time L2-stability and the uniqueness of solutions.
We also need to study the splitting schemes on an infinite mesh in the strip and derive the uniform in time
L2-stability and the mass conservation law. The DTBC operator is written in terms of the discrete convolution
in time and the discrete Fourier expansion in direction y perpendicular to the strip. Effective direct algorithms
using FFT in y are developed to implement the schemes for general potential. Promising numerical results on
the tunnel effect for some barriers and the practical error analysis in C and L2 norms are given.
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On construction of customized efficient exponential integrators for
large stiff systems of ODEs

M. Tokman, J. Loffeld and G. Rainwater

University of California, Merced, United States

The flexibility of the exponential propagation iterative (EPI) methods framework allows construction of exponen-
tial schemes with improved computational efficiency. We present three classes of EPI methods of Runge-Kutta
type (EPIRK) – nonsplit, split and hybrid integrators. We discuss the design principles that let us develop
efficient schemes of high order with low number of stages and, consequently, reduced computational cost for a
given problem. Further improvements in efficiency are derived from development of adaptive Krylov and parallel
versions of EPIRK integrators. A new MPI-based software package that includes implementation of exponential
methods for serial and parallel computational platforms will be presented. Using a suite of test problems we
illustrate performance advantages of the new schemes and software by comparing them with other exponential
and implicit methods including the popular CVODE package.
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Exponential B-series: The stiff case

V.T. Luan and A. Ostermann

Department of Mathematics, University of Innsbruck, Austria

For the purpose of deriving the order conditions of exponential Runge–Kutta and exponential Rosenbrock meth-
ods, we extend the well-known concept of B-series to exponential integrators. As we are mainly interested in the
stiff case, Taylor series expansions have their limitations. Our approach is based on the variation-of-constants
formula which allows us to treat semilinear problems, where the stiffness comes from the linear part. By truncat-
ing the arising exponential B-series to a certain order (which requires regularity of the considered exact solution)
we are able to identify the sought-after order conditions. In particular, we show how the stiff order conditions of
arbitrary order can be obtained in a simple way from a set of recursively defined trees.
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Projected explicit Lawson methods for the integration of
Schrödinger equation

B. Canoa and A. González-Pachónb

a IMUVA, Universidad de Valladolid, Spain
b Universidad de Valladolid, Spain

In this talk we will prove that explicit Lawson methods, when projected onto one of the invariants of nonlinear
Schrödinger equation (norm) are also automatically projected onto another invariant (momentum) for many
solutions. As this procedure is very cheap and geometric because two invariants are conserved, we will show
that it offers an efficient tool to integrate some solutions of this equation till long times. On the other hand, we
will show a detailed study on the numerical performance of these methods against splitting ones, with fixed and
variable stepsize implementation.
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Exponential type integrators for abstract quasilinear parabolic
equations with variable domains

C. González

Universidad de Valladolid, Spain

In this talk, I propose an exponential explicit integrator for the time discretization of quasilinear parabolic
problems. My numerical scheme is based on Runge-Kutta methods. In an abstract formulation, the initial-
boundary value problem is written as an initial value problem on a Banach space X

u′(t) = A
(
u(t)

)
u(t) + b(t), 0 < t ≤ T, u(0) given, (1)

involving the sectorial operator A(v) : D(v) → X with variable domains D(v) ⊂ X with regard to v ∈ V ⊂ X.
Under reasonable regularity requirements on the problem, I analyze the stability and the convergence behaviour
of the numerical methods.
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MS05 – Oscillatory Hamiltonian systems
Organized by: Christian Lubich

Multi-revolution composition methods for highly oscillatory
differential equations

Ph. Chartiera, J. Makazagab, A. Muruab and G. Vilmartc

a INRIA Rennes, IRMAR and ENS Cachan Bretagne, France
b Informatika Fakultatea, UPV/EHU, Donostia – San Sebastián, Spain
c Université de Genève, ENS Cachan, Antenne de Bretagne and INRIA Rennes, France

We introduce a new class of multi-revolution composition methods (MRCM) for the approximation of the N th-
iterate of a given near-identity map. When applied to the numerical integration of highly-oscillatory systems of
differential equations, the technique we propose benefits from the properties of standard composition methods:
it is intrinsically geometric and well-suited for Hamiltonian or divergence-free equations for instance. We prove
error estimates with error constants that are independent of the oscillatory frequency. Numerical experiments, in
particular for the nonlinear Schrödinger equation, illustrate the theoretical results, as well as the efficiency and
versatility of the methods.

Control of parasitic oscillations in linear multistep methods

E. Hairer

Université de Genève, Switzerland

Due to the presence of parasitic roots in symmetric linear multistep methods, the numerical solution of differential
equations gives rise to non-physical oscillations. Although these oscillations have a small amplitude in the
beginning, they can grow exponentially with time and soon dominate the error in the numerical approximation.
Certain symmetric multistep methods for second order differential equations have the feature that these oscil-
lations remain bounded and small (below the discretization error of the smooth solution) over very long time
intervals. We extend former results for second order Hamiltonian equations to systems with holonomic con-
straints (index 3 differential-algebraic equations). The technique of proof is backward error analysis combined
with modulated Fourier expansions.
The presented results have been obtained in collaboration with Christian Lubich and Paola Console.
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Highly oscillatory ODEs with irregular oscillators

A. Iserlesa, M. Condonb and S.P. Nørsettc

a University of Cambridge, United Kingdom
b University College Dublin, Ireland
c Norwegian University of Science and Technology, Trondheim, Norway

There exist several robust computational approaches to ODEs with regular highly oscillating forcing terms, not
least HMM and asymptotic expansions. However, once we consider irregular oscillators and allow for the presence
of stationary points, very little exists in terms of either theory or numerical practice. In this talk we develop a
general asymptotic expansion in this situation. Each n-th term in this expansion can be computed as a highly
oscillatory integral over n-dimensional simplexes.

A Multiscale Method for Highly Oscillatory Dynamical Systems
Using a Poincaré Map Type Technique

R. Tsai, B. Engquist and S.J. Kim

The University of Texas at Austin, United States

We propose a new multiscale method for computing the effective behavior of a class of highly oscillatory ordinary
differential equations (ODEs). Without the need for identifying hidden slow variables, the proposed method
is constructed based on the following ideas: a nonstandard splitting of the vector field (the right hand side of
the ODEs); comparison of the solutions of the split equations; construction of effective paths in the state space
whose projection onto the slow subspace has the correct dynamics; and a novel on-the-fly filtering technique for
achieving a high order accuracy. Numerical examples are given.
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Integrating Highly-Oscillatory Mechanical Systems with
Solution-Dependent Frequencies

D. Weiss

Karlsruhe Institute of Technology, Germany

The talk is about the application of several integrators to highly-oscillatory mechanical systems with solution-
dependent frequencies. As an example we use the stiff spring double pendulum: two mass points are attached
serially by stiff springs to one another. The numerical behaviour of several integrators such as FLAVORS, the
impulse method, and the mollified impulse method is studied. It is explained that a correct approximation of
the actual motion relies on an almost-invariance property of the actions in the system. This almost-invariance
property also guarantees the existence of an underlying effective system, which is derived. The analysis is done
using canonical transformations proposed by K. Lorenz and Ch. Lubich (see [1, 2]).
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MS06 – Markov Chain Monte Carlo and related dynamic
sampling methods

Organized by: Tony Lelièvre

Convergence of the Wang-Landau algorithm

G. Forta, B. Jourdainb, E. Kuhnc, T. Lelièvreb and G. Stoltzb

a CNRS LTCI & Telecom ParisTech, France
b CERMICS, École des Ponts Paris Tech, France
c INRA unité MIA, France

We analyse the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the
general class of adaptive importance sampling strategies which use the free energy along a chosen reaction
coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain
Monte Carlo algorithms, when the dynamic is metastable. The convergence of Wang-Landau is established as
well as a Central Limit Theorem.
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Optimal scaling of the transient phase of Metropolis Hastings
algorithms

B. Jourdaina, T. Lelièvrea and B. Miasojedowb

a CERMICS, École des Ponts Paris Tech, France
b Institute of Applied Mathematics and Mechanics, University of Warsaw, Poland

We consider the Random Walk Metropolis algorithm on Rn with Gaussian proposals, and when the target
probability measure is the n-fold product of a one dimensional law. It is well-known that, in the limit n tends to
infinity, starting at equilibrium and for an appropriate scaling of the variance and of the timescale as a function of
the dimension n, a diffusive limit is obtained for each component of the Markov chain. We generalize this result
when the initial distribution is not the target probability measure. The obtained diffusive limit is the solution
to a stochastic differential equation nonlinear in the sense of McKean. We prove convergence to equilibrium for
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this equation. We discuss practical counterparts in order to optimize the variance of the proposal distribution to
accelerate convergence to equilibrium. Our analysis confirms the interest of the constant acceptance rate strategy
(with acceptance rate between 1/4 and 1/3).

Numerical Analysis of Gaussian Random Field Generators

T. Shardlow

University of Bath, United Kingdom

We look at sampling Gaussian random fields with the eyes of a numerical analyst and consider the error analysis
of some established algorithms. In particular, we consider the circulant embedding and turning bands method,
along with methods based on the Wiener–Khintchine theorem and the Karhunen–Loeve expansion.

Gibbs Sampling for Hierarchical Bayesian Inverse Problems

A. Stuart, S. Agapiou, J. Bardsley and O. Papaspiliopoulos

University of Warwick, United Kingdom

I will describe properties of a Gibbs sampler applied to a hierarchical Bayesian formulation of the linear inverse
problem. Emphasis will be placed on the insight obtained from formulation of the problem in an infinite di-
mensional setting and this insight will be used to study convergence properties of Gibbs sampler, based on a
splitting into the unknown functions and the hyper-paremeters, as the computational mesh is refined. Posterior
consistency properties will also be exhibited, in the small noise limit.
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Organized by: Malte Braack and Andreas Prohl

On energy-stable schemes for a Vesicle Membrane phase-field model

F. Guillen-Gonzaleza and G. Tierrab

a Universidad de Sevilla, Spain
b University of Notre Dame, United States

In this talk we extend the ideas to approximate Allen-Cahn and Cahn-Hilliard equations giving in [2, 4, 3], to
design efficient numerical schemes for a physically motivated model given in [1], concerning the behavior of the
deformation of vesicle membranes coupled with incompressible flow fields. The model is based on the diffuse-
interface phase-field strategy, satisfying a dissipative energy law. The system is completed with two constraints,
fixing the volume and surface of the vesicle membranes.
We study the Vesicle Membrane model and analyze two different ideas to impose the volume and surface con-
straints (by means of either Lagrange multipliers or penalization), arriving at two different problems. We provide
one energy-stable numerical scheme for each problem, with a linear approximation for the Lagrange multipliers
case and a non-linear approach of the penalized problem.
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Finite element discretization of a phase field model for
incompressible fluid flow with variable density and viscosity

L. Banas

Bielefeld University, Germany

Accurate simulation of flow of mixtures of immiscible and incompressible fluids is of interest for a variety of
scientific and industrial problems. We present a finite element approximation for a system of Cahn-Hilliard and
Navier-Stokes equations with a non-smooth potential which can be used to describe the flow of multiple immiscible
and incompressible fluids with different densities and viscosities. We discuss advantages of the method and its
usefulness for porous media flow and optimal control applications.

Structure Preserving Discontinuous Galerkin methods in space and
time for Allen-Cahn equation

A. Sariaydin, B. Karasözen and M. Uzunca

Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

Gradient flow equations like Allen Cahn and Cahn-Hilliard are characterized by the energy decreasing property.
We apply space-time discontinuous finite elements to preserve the energy decreasing property in the discretized
form. For discretization in space, we use the interior penalty method discontinuous Galerkin method [1]. The
semi-discretized system is solved by the discontinuous Galerkin-Petrov method [2], which is preserving the energy
decreasing property and is A-stable. Numerical results for Allen-Cahn equation with Neumannn and periodic
boundary conditions confirm the theoretical results.
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Optimal control of incompressible two-phase flows

M. Braack and B. Tews

University of Kiel, Germany

We consider an optimal control problem of two incompressible and immiscible Newtonian fluids. The motion of
the interface between these fluids can be captured by a phase field model or level set model. Both methods are
subject of this talk. The state equation includes surface tension and is discretized by a discontinuous Galerkin
scheme in time and a continuous Galerkin scheme in space. In order to resolve the interface propagation we
also apply adaptive finite elements in space and time. We derive first order optimality conditions including the
adjoint equation which is also formulated in a strong sense. The optimality system on the discrete level is solved
by Newton’s method. In the numerical example we compare level sets with a phase field model.

On solvability of lubrication systems modelling evolution of two
immiscible viscous thin liquid films

G. Kitavtseva, S. Jachalskib and R. Taranetsc

a Max Planck Institute for Mathematics in the Sciences, Germany
b Weierstrass Institut, Berlin, Germany
c Institute of Applied Mathematics and Mechanics of the NAS, Donetsk, Ukraine

Existence of global nonnegative weak solutions is proved for coupled one-dimensional lubrication systems that
describe evolution of nanoscopic bilayer immiscible thin polymer films and take account of Navier-slip or no-slip
conditions at both liquid-liquid and liquid-solid interfaces. In addition, in the presence of attractive van der
Waals and repulsive Born intermolecular interactions existence of positive smooth solutions is shown.

Phase field models for two phase flows with phase transition

D. Kroener and M. Kraenkel

University of Freiburg, Germany

For the numerical simulation of two phase flows with phase transition we consider two different mathematical
models. The first one is based on the Navier-Stokes-Korteweg model. In this case the interface between the
two phases are not sharp. The width of the interface is proportional to a parameter δ which occurs in the
momentum equation. Now it turns out that (at least in the stationary case) the pressure jump is proportional
to this parameter δ. This is not in agreement with physical experience. Therefore we have replaced this Navier-
Stokes-Korteweg model by a diffuse phase field model. In that case it can be shown that the jump conditions are
correct in the limit δ → 0. For this phase field model, which is based on results of Alt, Witterstein and Dreyer, we
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have developed a Discontinuous Galerkin method for two phase flows in two space dimensions. Several numerical
test cases have been considered and the results will be shown in this contribution.
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MS08 – Splitting Methods
Organized by: Fernando Casas

Splitting Methods for High-Precision Integration in Dynamical
Astronomy

A. Farres, S. Blanes, F. Casas, J. Laskar and A. Murua

Universite de Bourgogne, France

In this talk we will present new families of splitting methods designed for the numerical integration of near-
integrable Hamiltonian systems, with a particular interest on planetary N-body problems. We will use a New-
tonian model for the motion of the planetary system and perform an extensive comparison between various
high-order symplectic splitting methods. The comparisons will be made in both, Jacobi and Heliocentric coordi-
nates.

Multi-revolution composition methods for time-dependent
Schrödinger equations

M. Thalhammer

University of Innsbruck, Austria

In this talk, the error behaviour of the recently introduced multi-revolution composition methods is analysed for
a class of highly oscillatory evolution equations posed in Banach spaces. The scope of applications in particu-
lar includes time-dependent linear Schrödinger equations, where the realisation of the composition approach is
based on time-splitting pseudo-spectral methods. The theoretical error bounds for the resulting space and time
discretisations are confirmed by numerical examples.

This is joint work with Philippe Chartier and Florian Méhats.
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Splitting methods for Schrödinger equations in imaginary time

Ph. Baderb, S. Blanesc and F. Casasa

a Universitat Politècnica de València, Spain
b Institut de Matemàtiques i Aplicacions de Castelló, Universitat Jaume I, Castellón, Spain
c Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Spain

An efficient method to compute the eigenstates of the Schrödinger equation is the propagation in imaginary
time. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods.
High order fractional time steps of order greater than two necessarily have negative steps and can not be used
for this class of diffusive problems. However, there exist methods which use fractional complex time steps with
positive real parts which can be used with only a moderate increase in the computational cost. We analyze the
performance of this class of schemes and propose new methods which outperform the existing ones in most cases.
If the gradient of the potential is available, methods up to fourth-order with real and positive coefficients exist.
We also explore this problem class and present highly optimized sixth order schemes for near integrable systems
using positive real part complex coefficients with and without modified potentials.
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On some splitting methods involving high order derivatives

F. Casas

Universitat Jaume I, Spain

In this talk we review some splitting schemes for Hamiltonian systems of the form H(q, p) = T (p) + V (q),
with T (p) quadratic in momenta, which involve the flow associated with the bracket [V, [T, V ]] alongside the
potential V (q). In this way second order derivatives of the potential have to be computed at each step along the
integration interval. Some new methods involving even higher order derivatives of the potential are considered.
Methods within this class require less stages than standard splitting schemes to achieve high order of accuracy.
We analyze the applicability of the new methods to specific problems where the evaluation of the nested brackets
is not particularly costly.
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MS09 – Software issues
Organized by: Francesca Mazzia and Luis Rández

Refinements in the Approximate Matrix Factorization for the time
integration of advection-diffusion-reaction PDEs

S. González Pinto, D. Hernández Abreu and S. Pérez Rodríguez

Universidad de La Laguna, Spain

The numerical integration of PDEs of Advection Diffusion Reaction type in several spatial variables in the MoL
framework is considered. The spatial discretization is based on Finite Differences and the time integration is
carried out by using splitting techniques applied to some Rosenbrock-type methods. The focus is to provide
a way of making some refinements to the usual Approximate Matrix Factorization (AMF), here considered as
the splitting technique to solve the large linear systems of equations. The AMF-refinements allow to recover
the convergence order of the underlying method and in some cases to enlarge the linear stability regions and
the Courant numbers with regard to the standard AMF-scheme. Most of these methods belong to the class of
the W-methods. A few numerical experiments on some important 2D and 3D non-linear PDE problems with
applications in Physics are presented. The development of some integration codes (in Fortran, Matlab, R) is in
progress.

Automated design and analysis of ODE solvers

D. Ketchesona and M. Parsanib

a King Abdullah University of Science and Technology - KAUST, Saudi Arabia
b NASA Langley, United States

Decades of research have led to a wealth of detailed knowledge about properties of numerical ODE solvers – their
accuracy, stability, efficiency, structure preservation, and so forth. The process of applying this knowledge to the
study of existing methods and the design of new ones can be fully automated. I will describe ongoing efforts
to create a software laboratory whose ultimate goal is to tell you everything you might want to know about a
given method, help you select an appropriate method for a given problem, or even design a new method that is
particularly effective for a given problem. Some examples will be given to demonstrate the power of these tools
in the context of applications like compressible fluid flow.
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daePAD – a DAE solver based on Projectors and AD

R. Lamour

Humboldt University of Berlin, Germany

The code daePAD integrates IVPs of DAEs. It determines the index of the DAE pointwise, calculates consistent
initial values and discovers singularities. Therefore, the code overcomes the weakness of existing tools.
We approximate the solution of IVPs for DAEs by truncated Taylor series using algorithmic differentiation (AD).
In fact, AD provides a suitable framework, especially for the computation of the differentiations.
The tractability index concept is applied with all its fascinating properties. The matrix sequence provides,
with its invariant ranks, a way of index determination and a monitor for singularities. For linear DAEs, the
computed projectors allow a decomposition into the inherent ODE and assignments to the algebraic and higher
index components, respectively. Thus, for nonlinear DAEs the iterations of a Newton-Kantorovich method are
explicitly present.
The code is realized in Matlab using the AD tool INTLAB.
Illustrating examples complement the talk.

Numerical Solution of Initial and Boundary Value Problems in the
open source software R: Packages deTestSet and bvpSolve

F. Mazziaa, J.R. Cashb and K. Soetaertc

a Dipartimento di Matematica, Università di Bari, Italy
b Imperial College London, United Kingdom
c Royal Netherlands Institute of Sea Research (NIOZ), Netherlands

In this talk we present the R packages deTestSet and bvpSolve for the numerical solution of initial and boundary
value problems. The R package deTestSet is derived from the Test Set for Initial Value Problem Solvers available
at http://www.dm.uniba.it/∼testset which includes documentation of the test problems, experimental results
from a number of proven solvers, and Fortran subroutines providing a common interface to the defining problem
functions. Many of these facilities are now available in the R package deTestSet, which comprises an R interface
to the test problems and to most of the Fortran solvers [1, 3, 4]. The R package bvpSolve includes an R interface
to well known Fortran solvers and a set of challenges test problems [1, 2].The packages deTestSet and bvpSolve

46



are free software distributed under the GNU General Public License, as part of the R open source software
project.
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Numerical methods with LATEX

L. Randeza, J.L. Varonab, J.I. Montijanoa and M. Pereza

a Universidad de Zaragoza, Spain
b Universidad de La Rioja, Spain

In this talk we present several ways to use numerical methods inside LATEX documents employing free software.
First, we show the use of python and SAGE in LATEX files with the large number of associated numerical libraries.
Also we present the extension of TEX known as LuaTEX. The main goal of LuaTEX is to execute scripts written
in the general purpose programming language called Lua.
Finally, we show how to produce interactive pdf documents from LATEX by using embedded javascript, noting
that we need only the free software Acroread to read this class of documents.

Solving Network DAEs with Python

C. Tischendorf, S. Baumanns, L. Jansen and M. Matthes

Humboldt University of Berlin, Germany

The dynamic modelling and simulation of flow networks (gas networks, water networks, electronic circuits, blood
circuits) leads to Differential-Algebraic Equations (DAEs). Depending on the (lumped or distributed) modelling
of each network element the DAEs may result from space discretized PDAEs and be, therefore, highly dimensional.
It leads to the demand for an efficient network DAE solver.
We discuss several solver issues as a network parser generating a stable DAE formulation and allowing a fast
function evaluation as well as a modular implementation of integration methods, nonlinear solvers and linear
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solvers. In particular, we address the need of a hybrid linear solver combining direct and iterative methods.
Finally, we present a Python implementation for solving network DAEs. It includes a Python solver for DAEs
of the form

f(
d
dtd(x, t), x, t) = 0.

Deferred correction based on exponentially fitted mono-implicit
Runge-Kutta methods

M. Van Daele and D. Hollevoet

Ghent University, Belgium

Deferred correction [1] is a well-known approach to the numerical solution of general first order systems of
nonlinear two-point boundary value problems. A well-known code built on this technique is TWPBVP.
The idea behind (iterated) deferred correction is to (iteratively) correct for the smooth errors of the discretization
algorithm. This is also the original idea behind exponential fitting methods. Exponential fitting [2] is a procedure
that produces variants of classical methods, aimed to solve problems with exponential (or in the complex case
oscillating) solutions more efficiently.
In this talk, the combination of exponential fitting and deferred correction based on mono-implicit Runge-Kutta
methods is discussed. Particular attention is given to the parameter selection of the exponentially fitted deferred
correction schemes to annihilate or minimize the leading error term. Several algorithms are discussed and
illustrated with numerical results.
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Solving Optimal Transport Problems Using Python

J. Van lent

University of the West of England, Bristol, United Kingdom

In the eighteenth century the mathematician and engineer Gaspard Monge considered the problem of finding the
best way of moving a pile of material from one site to another. This optimal transport problem has since found a
wide range of applications such as mesh generation, moving mesh methods, image registration, image morphing,
optical design, cartograms, probability theory and many more. In this talk, I will introduce the optimal transport
problem and its links to nonlinear optimisation, nonlinear partial differential equations and linear programming.
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I will illustrate how to use Python and libraries for scientific computing and visualisation such as Numpy, Scipy
and Matplotlib to implement and analyse numerical methods for optimal transport problems.

49





MS10 – Numerics for Stochastic Differential Systems
Organized by: Evelyn Buckwar

Energy-preserving integrators for stochastic Poisson systems

D. Cohena and G. Dujardinb

a Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
b INRIA Lille Nord Europe, 59650 Villeneuve d’Asq Cedex, France

A new class of energy-preserving numerical schemes for stochastic Hamiltonian systems with non-canonical struc-
ture matrix (in the Stratonovich sense) is proposed. These numerical integrators are of mean-square order one
and also preserve quadratic Casimir functions. In the deterministic setting, our schemes reduce to methods
proposed in [2] and [1].
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Regularity and convergence rates for SDEs with non-globally
Lipschitz coefficients

S. Coxa, M. Hutzenthalerb and A. Jentzena

a ETH Zürich, Switzerland
b University of Frankfurt, Germany

Consider the following SDE in Rd:

dXt = A(Xt) dt+B(Xt) dWt, t > 0; X0 = x ∈ Rd, (SDE)

where W is an m-dimensional standard Brownian motion, and A : Rd → Rd and B : Rd → Rd×m are continuous
mappings.
The classical results concerning convergence rates for temporal approximations of this SDE (e.g., convergence
rates for the Euler scheme) require the coefficients A and B to be globally Lipschitz continuous. However, many
SDEs arising from financial and physical models do not have globally Lipschitz continuous coefficients.

51



In joint work with Martin Hutzenthaler and Arnulf Jentzen, we consider the regularity of the solution to the SDE
with respect to the initial value x, for certain types of SDEs with non-globally Lipschitz continuous coefficients.
We use this to prove convergence rates for approximations.

The Numerical Approximation of Stochastic Evolution Equations in
Banach spaces

E. Hausenblasa and S. Coxb

a Montanuniversity Leobenh, Austria
b ETH Zürich, Switzerland

The topic of my talk will be the numerical approximation of stochastic evolution equations in Banach spaces.
Here we will consider Wiener and/or Levy noise.

On the use of discrete forms of the Itô formula

C. Kellya, G. Berkolaikob, E. Buckwarc and A. Rodkinaa

a University of the West Indies, Jamaica
b Texas A & M University, United States
c Johannes Kepler University, Austria

A discrete form of the Itô formula was introduced in a 2009 paper by Appleby et al [1] for the purpose of deriving
sharp a.s. asymptotic stability conditions for a scalar stochastic difference equation of the form produced by an
Euler-Maruyama discretisation of an SDE with nonlinear coefficients.
The formula has proved flexible, and has since found application in the a.s. asymptotic stability analysis of linear
systems with a.s. stabilising and destabilising perturbations under θ-Maruyama discretisation (see [2]).
We anticipate that versions of this discrete Itô formula will find wider application in the field of stochastic
numerical analysis. However, the original 2009 proof contains an implicit assumption that must be carefully
revisited each time the formula is adapted for a new discretisation method or test system. In this talk we explore
the nature of this assumption and how it may be dealt with.
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[2] G. Berkolaiko, E. Buckwar, C. Kelly and A. Rodkina, Almost sure asymptotic stability analysis of the θ-
Maruyama method applied to a test system with stabilising and destabilising perturbations. LMS Journal of
Computation and Mathematics, 15 (2012), pp. 71–83.

Weak convergence in second moments for linear SPDEs

R. Krusea, A. Anderssonb and S. Larssonb

a ETH Zürich, Switzerland
b Chalmers University of Technology, Sweden

In numerical analysis of stochastic differential equations (SDEs) one usually differentiates between the so called
strong and weak convergence. While the first notion ensures a good pathwise approximation of the SDE, a weakly
convergent scheme only gives a good approximation of the law of the exact solution. Strong convergence implies
weak convergence and, by a rule of thumb, the order of weak convergence is up to twice the order of strong
convergence.
In this talk we confirm this rule for an Euler Galerkin finite element approximation of a linear stochastic PDE
and a certain class of test functions, which ensures the so called convergence in second moments. The main
feature of our analysis is that we avoid the classical ansatz relying on the associated Kolmogorov’s backward
equation. Instead we follow a more direct approach with Gronwall’s lemma.
If time permits we indicate several possible ways to generalize this approach to semilinear SPDEs and a richer
class of test functions.

Integrating factor methods for stochastic differential equations

A. Kværnøa and K. Debrabantb

a Norwegian University of Science and Technology, Norway
b Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

The integrating factor methods, also called the Lawson methods, are well known techniques for solving stiff,
semi-linear differential equations. The main idea behind the method is to use a change of variables to remove
the explicit dependence on the stiff, linear part of the differential equation. In this talk, we will present some
such methods for stochastic differential equations and discuss their stability properties.
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Stability analysis for stiffly accurate SRK methods

A. Rößlera, D. Küpperb and A. Kværnøc

a Universität zu Lübeck, Germany
b Technische Universität Darmstadt, Germany
c Norwegian University of Science and Technology, Norway

In the present talk, we deal with the numerical solution of stochastic differential-algebraic equations (SDAEs) of
index one that are driven by a scalar Brownian motion. Recently, a class of stiffly accurate stochastic Runge-
Kutta (SRK) methods has been proposed for the strong numerical solution. These SRK methods turned out to
attain strong order one if they are applied to SDAEs and they are easy to implement. Considering this class
of implicit SRK methods, we present some special families of approximation schemes that possess very good
stability properties if their mean-square stability is analysed.
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An adaptive time stepping method for SDEs

T. Shardlowa and P. Taylorb

a University of Bath, United Kingdom
b University of Manchester, United Kingdom

We use rough path theory to understand an adaptive time stepping strategy for the pathwise approximation of
SDEs.
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MS11 – Structure preserving numerical methods
Organized by: Colin Cotter and Onno Bokhove

Compatible Space-Time Finite Element Discretizations for Wave
Tanks

O. Bokhovea, E. Gagarinab and J. van der Vegtb

a University of Leeds, United Kingdom
b University of Twente, Netherlands

The numerical modeling of nonlinear waves is often adequately done using conservative, Hamiltonian fluid dynam-
ics, even in the presence of some forcing and damping. For two laboratory experiments such a non-autonomous
Hamiltonian/variational framework is relevant: a) maritime engineering tests investigating rogue wave formation,
also in model wave tanks, and b) wave-sloshing validations in a table-top Hele-Shaw cell with breaking waves.
Wave-makers and linear momentum damping make these otherwise autonomous systems non-autonomous. We
developed a compatible time-discontinuous Galerkin finite element discretization of geometric/variational dy-
namics. These discretizations are based on using a non-conservative product flux for the classical p dq/dt-term
in the canonical variational principle. The challenge of finding compatible schemes for certain (forced/damped)
fluid systems in space and time will also be highlighted.

Analysis of Compatible Discrete Operator Schemes for Stokes
problem on Polyhedral Meshes

J. Bonellea and A. Ernb

a EDF R&D - CERMICS, École des Ponts Paris Tech, France
b CERMICS, École des Ponts Paris Tech, France

Compatible Discrete Operator (CDO) schemes belong to the class of compatible (or mimetic, or structure-
preserving) schemes. Their aim is to preserve key structural properties of the underlying PDE. This is achieved by
distinguishing topological laws and constitutive relations. CDO schemes are formulated using discrete differential
operators for the topological laws and discrete Hodge operators for the constitutive relations.
CDO schemes have been recently analyzed in [1] for elliptic problems. We first review the main results in this
case. Design properties for discrete Hodge operators leading to stability and P0-consistency are identified. We
also highlight links between CDO schemes and existing schemes in the litterature [2, 3].
Then, we derive CDO schemes for Stokes flows that are closely related to the recent work of Kreeft and Ger-
ritsma [4]. Finally, we present numerical results on 3D test cases.
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Mimetic Finite Element methods applied to the Shallow Water
Equations

A. McRae and C. Cotter

Imperial College London, United Kingdom

In the context of weather forecasting, the evolution of the ocean and atmosphere is governed by the Navier-
Stokes equations. The shallow water equations are a simplification of the full equations that are relevant for
atmosphere/ocean modelling. The analytic shallow water equations conserve several physically meaningful quan-
tities, such as the total energy and entropy within the system. In this talk, I will present a discretisation of
the shallow water equations, based on mimetic finite elements, which reproduces many of the same conservation
properties. This is achieved through using distinguished choices of function spaces. The function spaces are
linked by differential operators, which allows some operations to be represented exactly. This leads to discrete
equivalents of identities such as ‘div-curl = 0’ and ‘curl-grad = 0’, which turn out to be fundamental in proving
the discrete conservation properties.

Structure-preserving discretization of continuum theories

D. Pavlova, M. Desbrunb, E. Gawlikc, P. Mullenb and J. Marsdenb

a Imperial College London, United Kingdom
b California Institute of Technology, United States
c Stanford University, United States

In this talk I will describe several discrete models of infinite dimensional systems which preserve underlying
geometric structures. This work started with development of the first variational integrator for Euler fluids.
Since then, our methods have been developed further and are now applicable to a great variety of infinite-
dimensional systems, such as magnetohydrodynamics or complex fluids. I will discuss our new approach to
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discretization based on ideas of noncommutative geometry. One of the goals of this work is creating a new model
of discrete differential geometry that leads to a structure preserving discretization of general relativity.
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MS12 – Geometric and Algebraic Methods for Differential
Equations

Organized by: Brynjulf Owren

B-series - 50 years and still young

H.Z. Munthe-Kaas

University of Bergen, Norway

In 1963 three remarkable papers were published in three different mathematical disciplines. We all know John
Butcher’s celebrated paper on coefficients for the study of Runce-Kutta methods, initiating the theory of B-series
and their applications in numerical analysis. The same year E.B. Vinberg approached the same mathematical
structure from a differential geometric point of view, studying flat and torsion free connections on a manifold. In
the very same year M. Gerstenhaber approached the subject from a third route, via algebraic homology theory.
In this talk we will see that after 50 years, B-series is still a very active area of research. We will present some very
new unpublished results, and may touch upon both connections on manifolds and homologic algebra. Indeed,
B-series is an important mathematical tool with possible applications beyond numerical analysis.

Which methods have a B–Series expansion?

O. Verdiera and H. Munthe-Kaasb

a Umeå University, Sweden
b University of Bergen, Norway

Runge–Kutta methods are affine equivariant (they are compatible with affine variable transformations), and local
(they depend only on an infinitesimal neighbourhood of every point). The same holds for B-Series in general.
We address the following question:

are B–Series the only affine equivariant and local methods?

The answer turns out to be true in one dimension, and false in more dimensions.
The methods which are affine equivariant and local, however, almost have a B–Series expansion. This observation
leads to a new family of methods, which contains Runge–Kutta methods. Those methods have advantages over
Runge–Kutta methods: for instance, they can potentially be volume preserving, whereas B–Series are known not
to be.
We will explain what Runge–Kutta methods, B–Series, equivariance and locality mean in detail, so no prerequisite
is required to attend the talk.
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Algebraic structures related to stochastic differential equations

K. Ebrahimi-Farda, C. Curryb, S.J.A. Malhamb and A. Wieseb

a Instituto de Ciencias Matemáticas - ICMAT, Madrid, Spain
b Heriot-Watt University, Edinburgh, Reino Unido

In this talk we report on recent work exploring algebraic structures related to stochastic differential equations.
This comprises in particular the notion of quasi-shuffle products in the context of the algebra of semimartingales.

Approximation of Hamiltonian systems using a variational approach

S. Amata, M.J. Legaza and P. Pedregalb

a Universidad Politécnica de Cartagena, Spain
b Universidad de Castilla-La Mancha, Spain

Hamiltonian systems are related with numerous areas of mathematics and have a lot of application branches,
such as classical and quantum mechanics, statistics, optical, astronomy, molecular dynamics, plasma physics, etc.
In general, the integration of these systems needs the use of geometric integrators. In this talk, we introduce
a new variational approach for models which are formulated naturally as conservative systems of ODEs, most
importantly Hamiltonian systems. Our variational method for Hamiltonian systems, which is proposed here, is in
some sense symplectic and energy preserving. We analyze the new approach both theoretically and numerically.

Volume preserving numerical methods and generating forms

A. Zanna, H. Xue and O. Verdier

Department of Mathematics, University of Bergen, Norway

In this talk, we consider the problem of constructing volume-preserving maps (ultimately, numerical integrators)
for divergence-free differential equations. We study the problem using the technique of differential forms and
generating functions (generating forms), paying particular attention to the simplest nontrivial case that differs
from the symplectic case, i.e. n = 3. We propose a classification other than that of [1], who classified the
generating equations, compatibility conditions and twist condition for volume forms. From our classification,
we identify classes of generating forms that have a closed-form solution. Connections are made to the theory of
discrete Lagrangians [2], and we identify a new type of generating equations that are not known in the context
of symplectic maps.
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Preserving first integrals with symmetric Lie group methods

E. Celledoni, B. Owren and H. Marthinsen

Norwegian University of Science and Technology, Norway

We give a short introduction to Lie group methods. A selection of applications of Lie group integrators are
discussed. Finally, the notion of discrete gradient methods is generalised to Lie groups, integrators on cotangent
bundles of Lie groups are also discussed. This work is based on two recent papers in collaboration with Håkon
Marthinsen and Brynjulf Owren.
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Integral preserving methods on moving grids

B. Owren and S. Eidnes

Norwegian University of Science and Technology, Norway

Integral preserving schemes for ODEs can be derived by means of for instance discrete gradient methods. For
PDEs, one may first discretize in space by e.g. finite differences and then apply an integral preserving method for
the corresponding ODEs. For PDEs discretized on moving grids, the situation is more complicated, it is not even
clear exactly what we mean by an integral preserving scheme in this setting. In this talk we propose a definition
and then we derive a way to preserve integrals according to this definition. We show numerical examples for the
KDV and BBM partial differential equations.
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Recent results on Kahan’s method

R. Quispel

La Trobe University, Australia

We present some recent results on the method of Kahan.
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MS13 – Discontinuous dynamical systems: theory and numerical
methods

Organized by: Luciano Lopez and Cinzia Elia

A novel method to compute Lyapunov exponents of switched linear
systems (I)

M. Zennaroa and N. Guglielmib

a Dipartimento di Matematica e Geoscienze, Università di Trieste, Italy
b Università dell’Aquila, Italy

For a given finite set of matrices G = {C1, . . . , Cm}, where Ci ∈ Rd,d, i = 1, . . . ,m, we consider the switched
linear system of ODEs ẋ(t) = C(u(t))x(t), x(0) = x0, where x(t) ∈ Rd, u : R −→ {1, . . . ,m} is a piecewise
constant control function and C(i) = Ci.
We propose a novel method for the approximation of the upper Lyapunov exponent and, under suitable assump-
tions, of the lower Lyapunov exponent which is based on the computation of the joint spectral radius and lower
spectral radius of a sequence of discretized systems obtained by forcing the switching instants to be multiple of
∆(k)t, where ∆(k)t→ 0 as k → ∞.
In the first talk we shall give general ideas to bound the Lyapunov exponents. In the second talk we shall provide
details about the approximation of the joint (lower) spectral radius.

A novel method to compute Lyapunov exponents of switched linear
systems (II)

M. Zennaroa and N. Guglielmib

a Dipartimento di Matematica e Geoscienze, Università di Trieste, Italy
b Università dell’Aquila, Italy

For a given finite set of matrices G = {C1, . . . , Cm}, where Ci ∈ Rd,d, i = 1, . . . ,m, we consider the switched
linear system of ODEs ẋ(t) = C(u(t))x(t), x(0) = x0, where x(t) ∈ Rd, u : R −→ {1, . . . ,m} is a piecewise
constant control function and C(i) = Ci.
We propose a novel method for the approximation of the upper Lyapunov exponent and, under suitable assump-
tions, of the lower Lyapunov exponent which is based on the computation of the joint spectral radius and lower
spectral radius of a sequence of discretized systems obtained by forcing the switching instants to be multiple of
∆(k)t, where ∆(k)t→ 0 as k → ∞.
In the first talk we shall give general ideas to bound the Lyapunov exponents. In the second talk we shall provide
details about the approximation of the joint (lower) spectral radius.
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Optimal adaptive approximation of a class of non-autonomous IVPs
with unknown singularities

P. Przybyłowicz and B. Kacewicz

AGH University of Science and Technology, Faculty of Applied Mathematics, Krakow, Poland

The numerical solution of singular initial-value problems in ODEs leads to many interesting theoretical questions.
For example, there arise problem of finding strict bounds on error and information cost for algorithms that solve
such problems. Optimality of used algorithms is also of interest. We present recent theoretical results concerning
the solution of a class of scalar non-autonomous equations with separated variables and unknown singularities. In
the case when the right-hand side function has two singularities (which leads to four unknown ’events’ in the two-
dimensional space), we show the construction of an algorithm that automatically takes care of the singularities.
It adaptively modifies the mesh points to preserve the optimal error known for the regular case. Lower bounds
in the case of more than two singularities will also be discussed.
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A Filippov sliding vector field on a codimension 2 surface.
Theoretical justifications

C. Eliaa, L. Diecib and L. Lopeza

a University of Bari, Italy
b Georgia Institute of Technology, United States

We consider sliding motion on a codimension 2 discontinuity surface Σ. We characterize the case of Σ being
attractive in finite time upon sliding and we justify, under this assumption, the use of a given Filippov vector
field on Σ.
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Runge-Kutta methods for the numerical solution of discontinuous
systems of Filipov’s type

J.I. Montijano, M. Calvo and L. Randez

Universidad de Zaragoza, Spain

In this work we consider the numerical solution of initial value problems of ODEs with discontinuous right-hand
side. In particular we are interested in the integration of Filipov’s type systems where sliding behaviour on the
discontinuity surface is allowed. We show how Runge-Kutta methods can be adapted to the solution of this
class of problems, with the minimum information about the problem provided by the user. Some numerical
experiments using the well known DOPRI5(4) scheme are presented.
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Numerical solution of fractional differential equations with
discontinuous right–hand side

R. Garrappa

University of Bari, Italy

Recently, a growing interest has been shown in the study of fractional differential equations (FDEs) with discon-
tinuous right–hand side and their applications in sliding mode control.
This talk concerns with the numerical solution of discontinuous FDEs; after studying, for some test problems, the
finite–time convergence of the true solution on the sliding surface, we describe two methods for FDEs obtained
by generalizing, in different ways, the classical implicit Euler method.
An interesting result allows to show that different methods derived from the same implicit Euler method behave
in a different way when applied to discontinuous problems and just the method devised in the framework of the
fractional linear multistep methods inherit the chattering–free character of the original method [1]. We focus the
attention on this method, which allows finite–time stabilization on the sliding surface, study its main properties
and present test problems.
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One-sided numerical methods to locate event points in
discontinuous ODEs

L. Lopeza and L. Diecib

a Department of Mathematics, University of Bari, Italy
b Georgia Institute of Technology, United States

We present a numerical approach to treat discontinuous differential systems of ODEs of the type: x′ = f1(x)
when h(x) < 0 and x′ = f2(x) when h(x) > 0, and with f1 ̸= f2 for x ∈ Σ, where Σ := {x : h(x) = 0} is a
smooth co-dimension one discontinuity surface. Often, f1 (f2) cannot be evaluated when h(x) > 0 (h(x) < 0)
and for this reason, we consider numerical schemes which do not require f1 above Σ (respectively, f2 below Σ).
The use of explicit schemes allows us to avoid the evaluation of the numerical solution in the forbidden region
(see [1, 2]) but can produce oscillations of the numerical solution around the event point on the discontinuity
surface. A penalty technique, for the stepsize, can produce a sequence of numerical solutions which approach Σ
from one-side only.
We remark that in this talk we restrict attention only to accurately locate the event point where a trajectory
reaches Σ.
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MS14 – Efficient computation of matrix functions for exponential
and trigonometric integrators

Organized by: Volker Grimm

Rational L∞ approximations to the matrix cosine

I. Famelisa, C. Tsitourasb and V. Katsikisc

a TEI of Athens, Greece
b TEI of Chalkis, Dept. of Applied Sciences, GR34400 Psahna, Greece
c TEI of Piraeus, Dept. of Mathematics, GR12244 Egaleo, Greece

In applications, many processes are described by second order differential equations and the exact solution for
these equations is given in terms of the matrix functions sine and cosine. Among the most competitive algorithms
for computing these functions are Padé approximations [1]. Here we focus on two classes of matrices, positive and
Hermitian. We present intervals of applications for rational L∞ approximations of various degrees and tolerances
for these types of matrices in the lines of [2].
Acknowledgements: This research has been co-financed by the European Union (European Social Fund -
ESF) and Greek national funds through the Operational Program ”Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in
knowledge society through the European Social Fund.
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A Parallel Rational Krylov Subspace Method for the
Approximation of φ-Functions in Exponential Integrators

T. Göckler and V. Grimm

Karlsruhe Institute of Technology, Germany

The efficient approximation of the matrix φ-functions is an important task in the application of exponential
integrators. Recent advances have shown that rational Krylov methods have a great advantage over standard
Krylov methods for large matrices A with a huge field-of-values in the left complex half-plane.
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We consider the approximation of φ(A)v in the space

span
{
(z−mI −A)−1v, . . . , (zmI −A)−1v

}
with equidistant poles on the line Re(z) = γ > 0. It is possible to solve the occurring linear systems in parallel
by using a suitable parallel implementation. In this way, we achieve a significant speed-up compared to a serial
implementation.
We present error bounds that predict a uniform convergence. This is a fundamental property for the successful
application of this parallel rational Krylov method in exponential integrators. The advantages and efficiency of
our method are illustrated by several numerical experiments.

Recent advances of Leja interpolation

P. Kandolfa, M. Caliarib, A. Ostermanna and S. Rainera

a University of Innsbruck, Austria
b Università di Verona, Italy

Exponential integrators require a reliable and efficient implementation of the action of the matrix exponential
and related φ functions. In this work we consider the Leja method for performing this task. We give an overview
on recent developments with a closer look on a new a posteriori error estimate. A numerical comparison of a
revised implementation to other methods from the literature is presented.
For the new error estimate we define the notion of a residual based estimate where the residual is obtained from
differential equations defining the φ functions. For the numerical investigation of the newly defined error estimate
as well as the comparison of the Leja interpolation we rely on test examples from spatial discretizations of time
dependent partial differential equations. The experiments show that our new error estimate is robust and that
the Leja interpolation performs very well in comparison to other methods.

A moment-matching Arnoldi method for phi-functions

A. Koskela and A. Ostermann

University of Innsbruck, Austria

We consider a new Krylov subspace algorithm for computing expressions of the form
p∑

k=0

hkφk(hA)wk, where

A ∈ Rn×n, wk ∈ Rn, and φk are matrix functions related to the exponential function. Computational problems
of this form appear when applying exponential integrators to large dimensional ODEs in semilinear form u′(t) =
Au(t) + g(u(t)). Using Cauchy’s integral formula we give a representation for the error of the approximation
and derive a priori error bounds which describe well the convergence behaviour of the algorithm. In addition
an efficient a posteriori estimate is derived. Numerical experiments in MATLAB illustrating the convergence
behaviour are given.
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MS15 – Multiscale modelling: numerical methods and
applications

Organized by: Konstantinos Zygalakis and Assyr Abdulle

Multiscale image based modelling of two phase flow in soil

K. Daly and T. Roose

University of Southampton, United Kingdom

Processes governing fluid flow in soil and the water uptake by plant roots are inherently multiscale. The internal
pore structure of soil aggregates and the wider pore space between them contribute to the global behaviour
of soils. Using homogenization we approximate the effects of soil structure on the global flow properties by
considering three scales. The behaviour of the soil aggregate is determined by considering a sub sample of the
aggregate structure and a representative boundary region. This allows an aggregate scale hydraulic conductivity
and a set of boundary conditions to be determined. A second level of averaging allows the macroscopic behaviour
of a collection of aggregates to be obtained. Application of this process to X-ray CT images of real soil allows
us to answer fundamental questions regarding the interaction of roots in soil and feeds back into the resolution
driven imaging of soils by providing a lower limit to the scale of features which affect flow properties.

Multiscale Problems in Fluctuating Hydrodynamics

A. Donev and E. Vanden-Eijnden

Courant Institute of Mathematical Sciences, United States

Thermal fluctuations have been incorporated into the classical equations of fluid dynamics, however, the resulting
systems of stochastic PDEs are very difficult to handle. I will focus on the problem of diffusive mixing of fluids,
and demonstrate that accounting for the spectrum of the thermal velocity fluctuations is crucial in simulating even
the simplest diffusive processes in realistic liquids. Comparisons between hard-particle molecular dynamics and
fluctuating hydrodynamics finite-volume solvers show a good agreement. Due to extreme time scale separation
between mass and momentum diffusion (a factor of 400 in water, for example), even finite-volume simulations
become impractical. It is therefore necessary to use a seamless multiscale method to reduce the stiffness, or to
directly model the limiting dynamics obtained from adiabatic mode elimination. I will describe and compare
these approaches both analytically and numerically.
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Optimal control of multiscale systems: an approach using
logarithmic transformations

C. Hartmanna, W. Zhangb, J. Latorrea and G. Pavliotisc

a Freie Universität Berlin, Germany
b Zuse Institute Berlin, Germany
c Imperial College London, United Kingdom

Computing optimal controls of multiscale systems is often prohibitive, especially in high dimensions. A way out
is to replace the equations of motion by reduced-order models that do not contain the microscales and which
can be obtained by, e.g., homogenisation or averaging. But even though the reduced model may be a good
approximation if the controls are known, the question is whether one can also compute an optimal control from
it that approximates the optimal control of the original system. In most cases the answer is no, but for a certain
class of multiscale diffusions this questions can be answered in the affirmative. The talk will be about this
particular class of stochastic control problems that are linear quadratic in the control (though nonlinear in the
states) and can be transformed to a control-free problem by a logarithmic transformation. We give a theoretical
foundation of the method and discuss several numerical examples and applications.

A MsFEM approach à la Crouzeix-Raviart for problems on
perforated domains

F. Legoll, C. LeBris and A. Lozinski

CERMICS, École des Ponts Paris Tech, France

The Multiscale Finite Element Method (MsFEM) is a Finite Element type approximation method for multiscale
PDEs, where the basis functions used to generate the approximation space are specifically adapted to the problem
at hand. Many ways to define these basis functions have been proposed. Here, we introduce and analyze a specific
MsFEM variant, in the spirit of Crouzeix-Raviart elements, where the continuity of the solution accross the mesh
edges is enforced only in a weak sense [1, 2].
Our motivation stems from our wish to address multiscale problems for which implementing flexible boundary
conditions on mesh elements is of particular interest. A prototypical situation is that of perforated media, where
the accuracy of the numerical solution is generically very sensitive to the choice of values of the basis functions
on the boundaries of elements. The Crouzeix-Raviart type elements we construct then provide an advantageous
flexibility, as shown by our numerical results.
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Weak second order mean-square stable integrators for stiff
stochastic differential equations

G. Vilmarta, A. Abdulleb and K.C. Zygalakisc

a Université de Genève, ENS Rennes and INRIA, Switzerland
b EPF Lausanne, Switzerland
c University of Southampton, United Kingdom

We present two families of integrators for stiff Itô stochastic differential equations which exhibit simultaneously
favourable mean-square stability properties and weak second order of accuracy. The first integrators are implicit
with respect to the drift function and are shown to be mean-square A-stable for the usual complex scalar
linear test problem with multiplicative noise. The second integrators are fully explicit and still have extended
mean-square stability domains. These constructions inspired the design of a “swiss-knife” integrator for stiff
diffusion-advection-reaction problems with noise.
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Numerical studies of homogenization under a fast cellular flow

K. Zygalakis

University of Southampton, United Kingdom

We discuss the problem of a particle diffusing in the presence of a fast two dimensional cellular flow in a finite
domain. If the flow amplitude A is held fixed and the number of cells L2 goes to infinity, then the problem
homogenizes, while if L is held fixed and A goes to infinity the solution averages along stream lines. More
interesting is the case of the double limit when both L and A go to infinity, and this is the limit in which we focus
here. In particular, in the first part of the talk we review some well-known results related to homogenization for
Stochastic Differential Equations (SDEs) and discuss different approaches for calculating the effective diffusion
matrix. We then describe the construction of numerical integrators used in our numerical investigations and
finish the talk by presenting some numerical results for the double limit, focusing on the sharp transition between
the homogenization and the averaging regimes when A = L4.
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MS16 – DAEs and PDAEs: Analytical aspects, numerics and
applications

Organized by: Ricardo Riaza and Caren Tischendorf

Functional-analytic aspects of DAEs

R. März

Humboldt University of Berlin, Germany

The great progress of the theory of PDEs during the twentieth century, both the analytical and the numerical
parts, are unthinkable without the achievements and contributions of the functional analysis emerging at that
time. In contrast, so far, the impact of functional-analytic ideas in the theory of DAEs is weak. The field of
DAEs is widely dominated by standard ODE tools and geometric approaches. The functional-analytic character of
DAEs is hardly developed so far; by now, an adequate sophisticated characterization has not been accomplished.
What’s more, one might find seemingly conflicting assertions.
We consider operators associated with linear and nonlinear DAEs acting in various Banach and Hilbert spaces.
We ask for settings such that the DAE operator becomes bounded or closed with dense domain. Then we
investigate whether a DAE operator has a closed range and whether it is a Fredholm operator. Furthermore, we
discuss consequences for the approximate solution.

Convergence issues of DAEs with non-constant constraints

L. Jansen

Humboldt University of Berlin, Germany

Two of the best known DAE solver packages are DASSL and RADAU. While RADAU is based on the Radau IIA
method, DASSL uses BDF-methods to solve a DAE. The BDF-methods as well as the Radau IIA method may
fail to provide a convergent numerical solution for linear DAEs with time depending constraints. In particular
these methods do not converge if applied to the following well known example:

x′1 + ηtx′2 + (1 + η)x2 = 0,

x1 + ηtx2 = e−t,

with η < −0.5, [1]. While other prominent methods like Lobatto IIIA share the same convergence problem we
present a class of discontinuous collocation methods which overcomes this weakness.
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Characterizing DAE circuit models via mixed determinantal
expansions

I. García de la Vega and R. Riaza

Universidad Politécnica de Madrid, Spain

An index characterization is essential to make a correct numerical treatment of any kind of DAE and, in particular,
of DAE-based circuit models. Beyond the passive setting, an index characterization has been achieved for nodal
models by performing a Maxwell-type determinantal expansion of the nodal admittance matrix. Nevertheless, this
characterization precludes current-controlled resistors and topological degeneracies. Overcoming these restrictions
entails studying matrices with a more complex structure: in this communication we enlarge the scope of former
results by extending Maxwell’s determinantal expansions to these so-called mixed matrices. As a byproduct, we
address other related problems in circuit theory.
Research supported by Project MTM2010-15102 of Ministerio de Ciencia e Innovación, Spain, and by SisDAC
Research Group and Depto. de Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación,
Universidad Politécnica de Madrid.

Collocation for Singular BVPs in ODEs with Unsmooth Data

E.B. Weinmuellera, I. Rachunkovab and J. Vampolovab

a Vienna University of Technology, Austria
b Palacky University Olomouc, Czech Republic

We deal with BVPs for systems of ODEs with singularities. Typically, such problems have the form

z′(t) =
M(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1], B0z(0) +B1z(1) = β,

where B0 and B1 are constant matrices which are subject to certain restrictions for a well-posed problem. Here,
we focus on the linear case where the function f is unsmooth, f(t) = g(t)/t. We first deal with the analytical
properties of the problem – existence and uniqueness of smooth solutions.
To solve the problem numerically, we apply polynomial collocation and for the linear IVPs, we are able to provide
the convergence analysis. It turns out that the collocation retains its high order even in case of singularities,
provided that the analytical solution is sufficiently smooth. We illustrate the theory by numerical experiments;
the related tests were carried out using the Matlab code sbvp [1].
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Projection techniques for higher index DAEs revisited

M. Arnold

Martin Luther University Halle-Wittenberg, Germany

The numerically stable time integration of higher index DAEs is based on analytical transformations before time
discretization. It is well known that this index reduction may result in the drift-off effect that characterizes
the numerically observed violation of the original constraints of the higher index problem. Projection steps are
a standard technique to avoid the drift-off effect in the numerical solution without deteriorating the order of
convergence.
The combination of direct time discretization of higher index DAEs and projection steps may, however, result
in order reduction. This undesired behaviour will be studied for an index-3 Lie group integrator for constrained
mechanical systems that suffers from order reduction and spurious oscillations in a transient phase after each
projection step. Furthermore, we discuss how to avoid this order reduction and the spurious oscillations by a
systematic perturbation of starting values.

Diagnosis of Singular Points of DAEs

D. Estevez-Schwarz

Beuth Hochschule für Technik Berlin, Germany

At a singular point of a DAE, the IVP fails to have a unique solution. All results concerning the existence
and uniqueness of the IVP trace back to the Picard-Lindelöf-Theorem, whereas for DAEs the implicit function
theorem is used. Proven results are given for so-called regularity-regions, that can be characterized considering
linearized problems.

Automatic (or Algorithmic) Differentiation (AD) opens new possibilities to realize an analysis of DAEs and
to monitor the assumptions of regularity regions. We present how the index determination, the computation
of consistent initial values, and the diagnosis of singular points can be reliably undertaken for DAEs up to
index three. The approach uses the projector based analysis for DAEs employing AD. Different approaches are
considered and illustrated by some examples, with particular emphasis on electrical circuits containing controlled
sources.
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A different look at DAEs

P. Pedregala, S. Amatb and M.J. Legazb

a Universidad de Castilla-La Mancha, Spain
b Universidad Politécnica de Cartagena, Spain

By examining an error functional associated in a natural way with a given DAE, we propose to design some
simple and flexible numerical schemes to approximate the solutions. We will show various explicit examples
of the performance of the method. In addition, we would also like to examine what consequences of a more
analytical nature one can derive through this approach. This perspective has already been explored for regular
ODEs, so that this contribution is an attempt to extend those ideas for DAEs.
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MS17 – Numerical approximation of nonlinear waves
Organized by: Angel Durán and Vassilios Dougalis

Theory and numerical analysis of systems of KdV-equations

J. Bonaa, H. Chenb, O. Karakashianc and Y. Wangc

a University of Illinois at Chicago, United States
b University of Memphis, United States
c University of Tennessee Knoxville, United States

Systems of nonlinear dispersive wave equations arise in various physical contexts. Some of these have been shown
to provide reasonably good models of real phenomena. This lecture will review recent work in this area focused
upon a paradigm problem. We will see that systems can throw up a larger variety of phenomena than do the
associated single equations.

Fast and accurate computation of solitary waves to the free surface
Euler equations

D. Dutykha and D. Clamondb

a CNRS - UCD, Ireland
b Université de Nice Sophia Antipolis, France

Among different kinds of special solutions, solitary waves play the central role in the nonlinear science. These
solutions are very common in optics, plasma physics, but also in the hydrodynamics. In the present study
we propose a fast and accurate numerical method to compute solitary wave solutions to the free surface Euler
equations. It is based on the conformal mapping technique combined with an efficient Fourier-type pseudo-spectral
method. The resulting nonlinear equation is solved using the Petviashvili iterative scheme. Our computational
results are finally compared to some existing approaches such as the Tanaka method and the high order asymptotic
expansion of Longuet-Higgins & Fenton (1974).
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Error estimates for Galerkin-Finite element methods for the shallow
water equations

V. Dougalisa and D.C. Antonopoulosb

a Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece
b Department of Mathematics, University of Athens, 15784 Zographou, Greece

We analyze the standard Galerkin-finite element method for a simple initial-and boundary-value problem for the
Shallow Water equations and their symmetric version in one space dimension. We prove error estimates for the
semidiscrete problems for uniform and quasiuniform meshes, and also for their temporal discretization by the
Shu-Osher third order RK method. We also discuss other types of boundary conditions and present results of
relevant numerical experiments.

Numerical dynamic detection, generation and simulation of solitary
waves for nonlinear wave equations

N. Regueraa and I. Alonso-Mallob

a IMUVA and Departamento de Matemáticas y Computación, Universidad de Burgos, Spain
b IMUVA, Universidad de Valladolid, Spain

There exist different techniques in the literature to obtain numerically solitary waves of nonlinear wave equations.
In this work, we focus on the one known as iterative cleaning [3, 4]. It is based on numerical simulations of initial
conditions that evolve with time into a single main pulse or train of pulses along with dispersive tails, and uses
cleaning techniques in order to obtain a numerical approximation of a solitary wave. The main disadvantage
of this method is that it is used in a specific way for each numerical experiment, determining in a manual way
suitable times and regions for the cleaning of the numerical solution, which implies a lot of work.
As an alternative, we propose a completely automatic algorithm that detects and generates solitary waves in an
efficient and dynamic way [2]. It is based on a cleaning technique [1] and an efficient integration of the problem
that checks symmetry conditions and the preservation of the velocity of the wave.
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Instability of the split-step and related methods near localized
solutions of nonlinear Schrödinger equations

T. Lakoba

University of Vermont, United States

The split-step method (SSM) is widely used for numerical solution of nonlinear evolution equations, e.g., the
generalized NLS:

iut + uxx + (V (x) + 2|u|2)u = 0.

We will show how SSM’s instability is analyzed using a modified linearized NLS for a high-wavenumber numerical
error. For example, for the SSM which uses the finite-difference solution of its dispersive step, this modified
linearized NLS is:

iψt + δψ − αψχχ + V (ϵχ)ψ + 2|usol(ϵχ)|2(2ψ + ψ∗) = 0,

where ψ is proportional to the numerical error. We will show how the instability differs for a stationary, moving,
and oscillating background pulse.
We will also highlight differences between instabilities of the finite-difference and Fourier implementations of
the SSM, and then discuss how these results can be used to predict the instability of the integrating factor and
exponential time differencing methods.
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On the derivation of energy-preserving H1-Galerkin schemes for
Hamiltonian partial differential equations

Y. Miyatake and T. Matsuo

University of Tokyo, Japan

In this talk, we propose an energy-preserving finite element method for Hamiltonian PDEs. As is well known,
energy-preserving integrators often give qualitatively nice solutions, and on the other hand, H1-formulations are
generally preferred in the finite element discretizations from the practical point of view.
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A difficulty arises in the attempt of combining these two concepts, when the structure of the equation is compli-
cated. For example, for the equation which has higher order derivatives, we usually consider a mixed formulation
so that the equation can be formulated in H1 space. However, this generally destroys the structure of the
equation.
Our method successfully solves such a difficulty, and is applicable to not only a wide variety of Hamiltonian
PDEs but also dissipative PDEs. We can adopt the discrete gradient method for finding fully discrete schemes.
The new method can be combined also with symplectic time discretizations.

Long wave models and pressure evaluation for surface waves on
shear flows

H. Kalisch and A. Ali

University of Bergen, Norway

The effect of background vorticity on the pressure beneath steady long gravity waves at the surface of a fluid is
investigated. In particular, we derive a model equation and a formula for the pressure in a flow with constant
vorticity. The model equation was previously found by Benjamin [2], and is given in terms of the vorticity ω0,
and three parameters Q,R and S representing the mass flux, total head and momentum flux, respectively.
The focus of this work is on the reconstruction of the pressure from solutions of the model equation and the
behavior of the surface wave profiles and the pressure distribution as the strength of the vorticity changes. In
particular, it is shown that strong enough vorticity can lead to non-monotone pressure profiles under the wave.
As already indicated in [4], it is also possible for the fluid pressure near the wavecrest to be below atmospheric
pressure.
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On some systems for internal wave propagation

A. Durána and D. Mitsotakisb

a Department of Applied Mathematics, University of Valladolid, Valladolid, Spain
b Department of Applied Mathematics, University of California, Merced, United States

We consider a system of Benjamin-Ono type for the propagation of internal waves over a horizontal bottom and
a rigid lid. First we study the existence of solitary waves by numerical means while in a special case we present
analytical formulas of solitary waves that decay with a polynomial order. An efficient numerical method for the
integration of the specific system will be introduced and checked with several experiments, including solitary-wave
interactions and stability. Some comparisons with the classical Benjamin-Ono equation will also be made.
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MS18 – Mathematical Models and Numerical Methods for Image
Processing

Organized by: Eduardo Cuesta

Denoising an image by denoising its curvature image

M. Bertalmíoa and S. Levineb

a Universitat Pompeu Fabra, Spain
b Duquesne University, United States

In this talk we argue that when an image is corrupted by additive noise, its curvature image is less affected by
it, i.e. the PSNR of the curvature image is larger. We speculate that, given a denoising method, we may obtain
better results by applying it to the curvature image and then reconstructing from it a clean image, rather than
denoising the original image directly. Numerical experiments confirm this for several PDE-based and patch-based
denoising algorithms.

A nonconvex model for image segmentation

B. Coll, J. Duran and C. Sbert

Department of Mathematics and Computer Science, University of Balearic Islands, Spain

In this paper, we study the problem of unsupervised segmentation through the minimization of energies composed
of a quadratic data-fidelity term and a nonconvex regularization term. Since probably the greatest amount of
information in an image is contained in the edges of the objects, we give some conditions for the design of an
edge-preserving regularization. We show that, under those edge-preserving conditions, the functional can be
rewritten in a dual formulation as a weighted total variation and thus, Chambolle’s projection algorithm applies.
This leads to design an efficient algorithm based on alternate minimizations on the two variables. Experimental
results are presented and show the effectiveness and the efficiency of the proposed algorithm.
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Image processing and non–local continuous models

E. Cuesta and A. Durán

Department of Applied Mathematics, E.T.S.I. of Telecomunication, University of Valladolid, Spain

In this talk non-local PDE’s models of Volterra type [1]

(1) u(t) = u0 +

∫ t

0

K(t− s)Au(t)ds, t ≥ 0,

are considered in the context of image processing. In (1) u0 stands for the original image vector–arranged, u(t)
stands for the evolved u0 at time stage t, A is a linear operator (typically a discrete 2D-Laplacian), and K(t) is
a convenient convolution kernel.
The models (1) are linear, and well-posedness and stability are guaranteed under very general conditions on
K(t). The talk will discuss the adaptation of (1) to image processing problems. It will focus on scale–space
properties, the preservation of relevant quantities, and the comparison with local nonlinear PDE–based models
recently proposed in the literature [2].

Acknowledgement: The authors have been supported by MICINN project MTM2010-19510/MTM.
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A basic diffusion model on Grassmannians for simultaneous
Detection, Segmentation and Restoration in Video mini-sequences

J. Finat, E. Cuesta, A. Duran, A. Hurtado and R. Martinez

MoBiVAP Research Group at University of Valladolid, Spain

Noise and aliasing are two very common problems in Image Processing [2]. Both of them are irregularly distributed
and very often their local behavior follows different patterns. To minimize adverse effects of noise and aliasing, it
is necessary to recover well defined regions without degrading boundaries. First issue concerns to global aspects
of image segmentation related to minimization of convex functionals having in account an adaptive behavior
in terms of anisotropic diffusion. Second issue involves to the preservation of true edges (very often degraded
or missing) in terms of regularization operators. In this work we develop an approach based in the use of
grassmannians [1] which involves to a multivector representation of meaningful data (which are represented as
points of a grassmannian) and their tracking along a mini-video sequence in terms of shifted means to identify
tangent space to the grassmannian in order to have a robust initialization (Lipschitz).
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Second-order Riemannian Active Contours for Image Segmentation

G. Gallegoa, A. Valdésb and J.I. Rondaa

a Universidad Politécnica de Madrid, Spain
b Universidad Complutense de Madrid, Spain

This work aims at providing algorithms for geodesic active contours optimization based on second-order ap-
proximations of functionals. In contrast to the standard approach based on gradient schemes, that define a
time-continuous curve evolution that must be discretized, we propose algorithms that are intrinsically time-
discrete. To this purpose, we obtain the second-order approximation of the Riemannian curve energy and length
and show how the extrema of these approximations can be characterized by means of linear second order differ-
ential equations. Moreover, we prove that the solution of the equations for the length functional is given by a
simple closed-form expression, while the damped case requires the solution of a second-order ordinary differential
equation that can be considered as a generalization of the classical equation defining the Jacobi fields along the
curve.
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Discrete gradient methods in image processing

V. Grimma and G.R.W. Quispelb

a Karlsruhe Institute of Technology, Germany
b La Trobe University, Australia

In PDE-based image diffusion, gradient systems are widely used to denoise, regularise, and, in general, to enhance
images. For these applications, preservation of the gradient structure in the discretisation is much more important
than, for example, higher order of the integration scheme. We will discuss some results, that indicate, that discrete
gradient methods can outperform standard methods in these applications.

Some Nonlinear Diffusions inspired by the Perona-Malik equation

P. Guidottia, Y. Kimb and J. Lambersc

a University of California, Irvine, United States
b Yale School of Medicine, United States
c University of Southern Mississippi, United States

Two regularizations of the Perona-Malik equation will be described which allow for some mathematical analysis
and for implementations which exhibit some desirable properties. Mathematical and experimental results will be
discussed.
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MS19 – Recent advances on parareal algorithms
Organized by: Frédéric Legoll and Yvon Maday

Introduction to the minisymposium and to the parallelisation in
time algorithms

Y. Maday

Université Pierre et Marie Curie, France

In the same spirit as the domain decomposition methods in space, time domain decomposition methods are based
on a decomposition of the time interval, and then each solution trajectory is solved simultaneously in all the time
subintervals using an iteration on the initial condition over each subinterval. The parareal algorithm proposed in
2001 by Lions, Maday and Turinici allowed to highlight the interest in the parallelisation in this direction. There
are now several successful implementations together with convergence results that illustrate the interest of the
parallelization in time is for problems when very many processors are available. The speedup — even though
not so impressive than with parallelization in space for the plain approach — allows to reach real time leading
to the name parareal (parallel in real time) of the new algorithm from 2001.

Now the method is more mature, it appears better like a large framework that allows to propose new ideas working
on different aspects of the different ingredients of the method. This symposium will allow to first present the
frame of the parareal approach and then illustrate its application on very large problems together with attempts
to cure some problems of the original algorithms and also how to combine those iterations with others in order
to achieve the plain speedup available by the given number of processors.

A study of parareal applications to advanced operation scenario
simulations of fusion plasma

D. Samaddara, T.A. Casperb, S.H. Kimb, L.A. Berryc, W.R. Elwasifc, D. Batchelorc and W.A. Houlbergb

a CCFE, UK Atomic Energy Authority, United Kingdom
b ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance, France
c Oak Ridge National Laboratory, Oak Ridge, United States

Operation scenario simulations play a significant role in the construction as well as operation of fusion experi-
ments. This work explores the applicability of the Parareal algorithm [1] to such simulations, using the CORSICA
[2, 3] code as a test case. CORSICA is an advanced free-boundary equilibrium and transport simulation code
used to study scenarios in burning plasma experiments. The “Parareal Framework” developed at ORNL has
been used for the implementation. In the past the algorithm has been applied to multiple problems including
fully developed plasma turbulence [5]. CORSICA introduces new challenges. These are quasi steady states with
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intermittent events resulting from MHD activity, pellet injection or an introduction of ELMs. The algorithm
involves a predictor-corrector technique. This work studies the extent of the crudeness of the coarse solver when
applying the algorithm. Its successful implementation makes time efficient simulations of ITER-like plasmas
more tractable.
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An adjoint approach for stabilizing the parareal method for
hyperbolic problems

F. Chena, Y. Madayb and J. Hesthavenc

a Brown University, United States
b Universite Pierre et Marie Curie, France
c EPF Lausanne, Switzerland

The parareal method provides opportunities for achieving higher efficiency in parallel computing. However, it
is known to be unstable for hyperbolic problems, which play an important role in large scale and long time
simulations of wave phenomenon. Specifically, when the coarse resolution is not fine enough, the solution blows
up during intermediate iterations. It is challenging to stabilize the parareal method for hyperbolic problems
with unrestricted coarse step size. The main reason for the instability is that condition numbers of underlying
propagation matrices become too large so that the coarse solver fails in precondition. Motivated by this, we
incorporate the adjoint problem into better iterative strategies like the conjugate gradient method, so that the
A-norm errors strictly decrease in terms of iterations. Details of the new approach, as well as numerical results
of first- and second-order wave equations and the Burgers’ equation, will be presented.
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Parallel-in-time integrators for Hamiltonian systems

F. Legoll, X. Dai, C. LeBris and Y. Maday

CERMICS, École des Ponts Paris Tech, France

In this talk, we will describe some recent advances for the integration of Hamiltonian systems using parareal-type
algorithms. In this specific context, structure-preserving algorithms are preferably employed, because they show
interesting numerical properties, in particular excellent preservation of the total energy of the system. We will
describe here several structure-preserving variants of the original plain parareal algorithm. Numerical tests on
several model systems illustrate the properties of the proposed algorithms over long integration times.

This is joint work with X. Dai (Univ. Paris 6 and Chinese Academy of Sciences), C. Le Bris (ENPC and INRIA)
and Y. Maday (Univ. Paris 6 and Brown Univ.).
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An intermediate state method for the time-parallelized solving of
optimal control problems

J. Salomon

CEREMADE, Université Paris-Dauphine, France

In this talk, we present a general approach to parallelize efficiently optimal control solvers. This method, first
introduced in 2006, is based on the introduction of intermediate states that enables to decompose the original
optimality system into similar sub-systems that can be treated independently using standard solvers. We present
a recent improving on the method that makes it fully efficient and discuss the role of the solver used in parallel.
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A novel, semilagrangian, coarse solver for the parareal technique
and its application to 2D drift-wave (BETA) and 5D gyrokinetic

(GENE), turbulence simulations

J.M. Reynolds-Barredoa, D.E. Newmanb, R. Sancheza and F. Jenkoc

a Universidad Carlos III de Madrid, Spain
b University of Alaska Fairbanks, Fairbanks, United States
c Max-Planck-Institut fur Plasmaphysik EURATOM-IPP, Garching, Germany

In this work, we apply parareal [1] to convection dominated problems. In particular, to a 2D drift waves case
using BETA code and in a 5D gyrokinetic simulation using GENE code. Partial success was previously reported
[2] but, here, a new and promissing coarse solver based on semilagrangian time advance is proposed and tested
on both kind of simulations. The advantage of the semilagrangian solver is that it can be split into a piece that
can run in parallel (the computation of the interpolation coefficients) and a piece that is computed serially (the
application of the coefficients over the convected field). The second piece is the time limiting part (due to its
sequential character) but can be computed much faster than the fine solver.

References

[1] J. Lions, Y. Maday and G. Turinici, CR Acad. Sci. I - Math 332 (7) 661 (2001)

[2] D. Samaddar, D.E. Newman and R. Sanchez, J. Comput. Phys. 229, 6558 (2010)

A parareal multiscale coupling of finite element and Lattice
Boltzmann methods

F. Choulya, M. Astorinob, A. Lozinskia and A. Quarteronic

a Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Besançon, France
b CMCS, Chair of Modelling and Scientific Computing, MATHICSE, Lausanne, Switzerland
c CMCS, Lausanne, Switzerland & MOX, Modeling and Scientific Computing, Milano, Italy

We present a new numerical procedure for the simulation of time-dependent problems based on the coupling
between the finite element method and the Lattice Boltzmann method. The two methods are regarded as
macroscale and mesoscale solvers, respectively. The procedure is based on the parareal paradigm and allows
for a truly multiscale coupling between two numerical methods having optimal efficiency at different space and
time scales. The main motivation, among other, is that one technique may be more efficient, or physically more
appropriate or less memory consuming than the other depending on the target of the simulation and/or on the
sub-region of the computational domain. We detail the theoretical and numerical framework for linear parabolic
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equations. We show various numerical examples that will validate the proposed procedure and illustrate its
advantages. Finally some recent extensions will be discussed.

A micro-macro parareal algorithm: application to singularly
perturbed ordinary differential equations

G. Samaeya, F. Legollb and T. Lelièvreb

a KU Leuven - University of Leuven, Belgium
b CERMICS, École des Ponts, Paris Tech, France

We introduce a micro-macro parareal algorithm for the time-parallel integration of multiscale-in-time systems.
The algorithm first computes a cheap, but inaccurate, solution using a coarse propagator (simulating an approxi-
mate slow macroscopic model), which is iteratively corrected in parallel using a fine-scale propagator (accurately
simulating the full microscopic dynamics). We provide a numerical analysis of the algorithm for a prototypical
example of a micro-macro model, namely singularly perturbed ordinary differential equations.
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MS20 – Variational Techniques in Structure-Preserving Methods
for Partial Differential Equations

Organized by: Takaharu Yaguchi and Christopher J. Budd

Predictor corrector algorithm with the discrete variational
derivative method

D. Furihata

Osaka University, Japan

The discrete variational derivative method is a structure-preserving numerical method for partial differential
equations. The obtained schemes mimic some variational structures of the original equations, and they inherit
the conservation property or dissipation one. Those are nonlinear when the original equations are nonlinear, and
this nonlinearity may be a computational difficulty. We have developed the linearization technique to overcome
this difficulty, but the obtained linear schemes tend to be unstable. Furthermore, the technique is applicable to
only lower order polynomial equations.
In such a situation, we extended the technique to be applicable to nonpolynomial problems. This means that we
are able to obtain fast schemes for every equation, but we do not improve the unstable tendency of the obtained
schemes. We, therefore, attempt a breakthrough based on the classical predictor–corrector iteration method to
avoid this tendency.
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Energy-preserving compact difference schemes for nonlinear wave
equations

T. Matsuo

University of Tokyo, Japan

For the nonlinear wave equations such as the KdV equation, energy-preserving schemes are preferable whenever
that is possible, and there are several systematic ways for constructing such schemes. On the other hand, mainly
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in numerical fluid dynamics, it is quite common to employ special difference operators, called compact difference
operators, which replicate the original dispersion relation as good as possible for better wave propagations. In this
talk, we first show that these two techniques can be combined to construct energy-preserving compact difference
schemes. Then we point out that such combination becomes quite nontrivial, when we seek for better compact
difference schemes with narrow stencils.
This is a joint work with T. Yaguchi and H. Kanazawa.

Collective integrators for point vortex dynamics on the sphere

K. Modina, R. McLachlanb and O. Verdierc

a Chalmers University, Sweden, Sweden
b Massey University, New Zealand
c Umeå University, Sweden

The dynamics of point vortices have a long history, going back to a seminal 1858 paper by Helmholtz. Point
vortices occur as special solutions to 2D incompressible fluid equations. On the sphere, point vortices provide
important approximations of certain geophysical flows.
In this talk we present efficient Lie-Poisson integrators for point vortices on the sphere. The approach is based
on collective integrators: a novel technique to construct structure preserving integrators for general Hamiltonian
systems on a Lie-Poisson manifold.

Local discontinuous Galerkin methods for Hamiltonian PDEs

Y. Suna, W. Caib and W. Tanga

a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
b School of Mathematical Sciences, Nanjing Normal University, China

In this talk, we present the time-space local discontinuous Galerkin methods [1] for Hamiltonian PDEs in the
multisymplectic formulation. With the appropriate quadrature formula, the resulting discretizations are equiv-
alent to the multisymplectic partitioned Runge-Kutta methods [2] whose implementation has not been fully
understood besides for a class of multisymplectic Hamiltonian systems in special forms [3]. We use the new
discretization strategy to simulate the soliton solutions of nonlinear Schrödinger equation, and observe the errors
of numerical solutions and the global charge.
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Discretization of Nonholonomic Dynamics

F. Jimenez and J. Scheurle

Technische Universität München, Germany

Nonholonomic dynamics can be understood in some cases as a set of Differential Algebraic Equations (DAEs).
We explore some techniques to discretize these equations and wonder how this discretization can be reinterpreted
as a deformation of the continuous dynamics.
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The Construction and Analysis of Variational Integrators

M. Leok and J. Hall

University of California, San Diego, United States

Variational integrators are geometric integrators that are based on a discrete Hamilton’s variational principle.
We will review the role of Jacobi’s solution of the Hamilton–Jacobi equation in the variational error analysis
of variational integrators. Jacobi’s solution can be characterized either in terms of a boundary-value problem
or variationally, and these lead to shooting-based variational integrators and Galerkin variational integrators,
respectively.
Computable discrete Lagrangians can be obtained by choosing a numerical quadrature formula, and either a
finite-dimensional function space or an underlying one-step method. We prove that the resulting variational
integrator is order-optimal, and when spectral basis elements are used in the Galerkin formulation, one obtains
geometrically convergent variational integrators.
We will also discuss generalizations of variational integrators to Lie groups, homogeneous spaces and Lagrangian
PDEs.
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An energy-preserving exponentially-fitted continuous stage
Runge–Kutta method for Hamiltonian systems

Y. Miyatake and T. Matsuo

University of Tokyo, Japan

Recently, the construction of symplectic exponentially-fitted Runge–Kutta (EFRK) methods for the numerical
integration of Hamiltonian systems with periodic or oscillatory solutions have been attracting a lot of interest
(see [1, 3], for example). In this talk, from the standpoint of geometric integration, we consider a deriva-
tion of energy-preserving exponentially-fitted methods. For this aim, we show sufficient conditions for energy-
preservation in terms of the coefficients of continuous stage RK methods (continuous stage RK methods were
introduced by Hairer [2]), and extend the theory of EFRK methods to the context of continuous stage RK
methods. In this talk, by combining these two theories, we derive second and fourth order energy-preserving
exponentially-fitted schemes.
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Variational Integrators and Discrete Lagrangian Mechanics for
Interconnected Systems

H. Yoshimura and S. Hanawa

Applied Mechanics and Aerospace Engineering, Waseda University, Japan

It has been focused upon developing stable and efficient numerical integrators for large scale systems such as
electric networks and multibody space structures. In particular, it is no doubt that the structure-preserving or
variational integrators must be an essential tool for design and analysis of nonconservative as well as conservative
interconnected systems, where the interconnection may be given by constraints (see [1, 2]). In this talk, we
explore variational integrators for interconnected systems with degenerate Lagrangians, where the degeneracy may
induce the primary constraints in the sense of Dirac in addition to holonomic constraints. We show the discrete
variational structures for holonomic Lagrangian systems for electric transmission lines by interconnecting modular
electric circuits. We also show numerical validity of our theory in comparison with conventional integrators for
constrained Lagrangian systems.
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MS21 – Modelling and numerical methods in financial
mathematics

Organized by: Carlos Vázquez

Numerical approaches for the evaluation of derivative securities

M. Breton

GERAD and HEC Montréal, Canada

The evaluation of financial derivatives or of regulatory adjustments regularly requires the use of numerical pro-
cedures. In practice, these procedures are used repeatedly and are required to provide precise values in a few
seconds. In the last few years, dynamic programming coupled with interpolation has been shown to be an efficient
and flexible approach for the evaluation of complex products.
After an overview of classical numerical methods, we present the basic concepts of recursive modeling. Application
examples are used to illustrate the flexibility and applicability of recursive models. We finally compare the
efficiency of various interpolation and integration approaches.

A General Approach for Stochastic Correlation using Hyperbolic
Functions

M. Ehrhardt, L. Teng and M. Günther

University of Wuppertal, Germany

It is well known that the correlation between financial products, financial institutions, e.g., plays an essential role
in pricing and evaluation of financial derivatives. Using simply a constant correlation may lead to correlation
risk, since market observations give evidence that the correlation is not a deterministic quantity.

In this talk, we suggest a new approach to model the correlation as a hyperbolic function of a stochastic process.
Our approach provides a stochastic correlation which is much more realistic to model real world phenomena and
could be applied in many financial fields.

As an example, we compute the price of quanto applying our new approach. Using our numerical results we
investigate the effect of considering stochastic correlation on pricing the quanto.
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Algorithms and Numerical Methods for High Dimensional Financial
Market Models

A. Falco

Universidad CEU Cardenal Herrera, Spain

A major challenge in Computational Finance is the pricing of options that depend on a large number of risk
factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute
the underlying asset and determine the dimensionality of the corresponding parabolic equation. A number of
problems in high-dimensional spaces have been addressed by the usual technique of separation of variables. In
order to use the separated representation for numerical analysis applications, many algorithms and operations
need to be translated into this framework. The aim of this talk is present and review some of these techniques
in the context of High Dimensional Financial Markets Models.

Accurate and Efficient Techniques for Pricing Derivatives and for
Computing Risk Measures

C. Oosterlee

CWI - Center for Mathematics & Computer Science, Netherlands

When Fourier techniques are employed to specific option pricing cases from computational finance with non-
smooth functions, the so-called Gibbs phenomenon may become apparent. This seriously impacts the efficiency
and accuracy of the pricing. For example, the Variance Gamma asset price process gives rise to algebraically
decaying Fourier coefficients, resulting in a slowly converging Fourier series. We apply spectral filters to achieve
faster convergence. Filtering is carried out in Fourier space; the series coefficients are pre-multiplied by a decreas-
ing filter, which does not add significant computational cost. Tests with different filters show how the algebraic
index of convergence is improved.
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Robust pricing of European options with wavelets

L. Ortiz-Graciaa and C. Oosterleeb

a Centre de Recerca Matemàtica, Spain
b CWI - Center for Mathematics & Computer Science, Netherlands

We present a novel method for pricing European options based on the wavelet approximation (WA) method and
the characteristic function. We focus on the discounted expected payoff pricing formula, and compute it by means
of wavelets. We approximate the density function associated to the underlying asset price process by a finite
combination of B-splines, and recover the coefficients of the approximation from the characteristic function. Two
variants for wavelet approximation will be presented, where the second variant adaptively determines the range
of integration. The compact support of a B-splines basis enables us to price options in a robust way, even in
cases where Fourier-based pricing methods may show weaknesses. The method appears to be particularly robust
for pricing long-maturity options and fat tailed distributions.

Efficient numerical methods for option pricing in
time-inhomogeneous models

O. Reichmanna, V. Kazeevb and Ch. Schwabb

a ETH Zürich, Switzerland
b Seminar for Applied Mathematics, ETH Zurich, Switzerland

Lévy processes have, since their initial use in the early 1990ies by D. Madan and his collaborators, become a
standard tool in financial modeling. Time-inhomogeneity severely hampers their efficient performance in pricing
derivatives across multiple strikes and maturities in markets which are intrinsically time inhomogeneous.
We present a class of processes beyond Lévy whose time-inhomogeneous parabolic partial integrodifferential
equations (PIDEs) exhibit strong degeneracies in time. The arising PIDE reads as follows:

∂tu− tγA(t)u = f on I ×D, (2)
u(0) = g, (3)

where (A(t))t≥0 is an appropriate family of operators, g the sufficiently smooth initial data, γ a constant with
γ ∈ (−1, 1), I = (0, T ) and a Lipschitz domain D ⊂ Rd for d ≥ 1. Note that negative exponents γ lead to an
explosion at t = 0.
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Pricing Derivatives in High-Dimensional Settings via PDE
Expansions

C. Reisinger and R. Wissmann

University of Oxford, United Kingdom

We propose a new numerical approach to high-dimensional partial differential equations (PDEs) arising in the
valuation of exotic derivatives on the LIBOR curve. The proposed method uses principal component analysis
(PCA) of the underlying process in combination with a Taylor expansion of the value function into solutions to
low-dimensional PDEs. The approximation is related to anchored analysis of variance (ANOVA) decompositions
and is expected to be accurate whenever the covariance matrix has one or few dominating eigenvalues. On the
example of Bermudan swaptions and Ratchet floors, which are considered difficult benchmark problems, we are
able to demonstrate that for problems with medium to high dimensionality and moderate time horizons the
presented PDE method delivers results comparable in accuracy to the MC methods considered here in similar or
(often significantly) faster runtime.

Numerical methods for pricing companies with PDE models and
GPUs

C. Vázquez, D. Castillo, A. Ferreiro and J.A. García-Rodríguez

Universidade da Coruña, Spain

We propose appropriate numerical methods for companies valuation models proposed in [1]. The models are for-
mulated in terms of final-boundary value problems associated to Kolmogorov type equations, sometimes including
an additional unilateral constraint. We also analyze the required boundary conditions so that the final-boundary
value problem is well posed, thus allowing to remove unnecessary boundary conditions proposed in [1]. Numeri-
cal methods are mainly semilagrangian schemes in the direction without diffusion combined with implicit second
order finite differences schemes in the direction where diffusion is present. This choice of numerical methods
allows to develop an original parallelization strategy, which results to be specially efficient when using GPUs
technologies [2]. This methodology can be applied to problems in mining industry or Asian options pricing [3].
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MS22 – Numerical solution of stochastic differential equations
Organized by: Andreas Rößler and Kristian Debrabant

Post-transcriptional regulation in the nucleus and cytoplasm: a
study of mean time to threshold and the narrow escape problem

K. Burragea, H. Byrnea, K. Daoducb, D. Holcmanb and A. Jonesa

a CS Oxford, United Kingdom
b ENS Paris, France

mRNA can be regulated and degraded by small non-coding RNA molecules: siRNAs and microRNAs. We study
the process of RNA interference in mammals by examining the survival condition for mRNAs to escape from
the nucleus before being degraded. We develop a model of mRNA interacting with siRNAs. As the number of
binding sites is small, many events are stochastic in nature, we compute the probability that mRNA escapes
degradation using a stochastic approach. We obtain explicit expressions when the siRNA can bind irreversibly to
the mRNA. We also investigate the case of post-transcriptional regulation of the tumour suppressor gene, PTEN.
PTEN mRNA are localized to the cytoplasm, and PTEN mRNA can be degraded by microRNAs or protected
from degradation by complementary small regulatory RNAs that block the binding sites on the mRNA. We
compute the probability of PTEN mRNA translocating to the endoplasmic reticulum before being degraded by
microRNAs.

Mean-Square Stability of Stochastic Linear Two-step methods for
SDEs

E. Buckwar and T. Sickenberger

Johannes Kepler University Linz, Austria

In this talk we present a linear stability analysis of two-step Maruyama-type methods, for simplicity of notation
applied to a scalar stochastic differential equation (SDE), although the analysis also works for a system of SDEs.
The main issue is that we obtain a stability matrix, which reflects the asymptotic mean-square stability behaviour
of the approximations, and that can be analysed by deterministic methods. We also provide stability plots.

105



Weak order exponential Runge-Kutta methods for stiff stochastic
differential equations

Y. Komoria, D. Cohenb and K. Burragec

a Kyush Institute of Technology, Japan
b Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
c University of Oxford and Queensland University of Technology

We are concerned with numerical methods which give weak approximations for stiff Itô SDEs. It is well known
that the numerical solution of stiff SDEs leads to a stepsize reduction when explicit methods are used. However,
there are some classes of explicit methods that are well suited to solving some types of stiff SDEs. One such class
is the class of stochastic orthogonal Runge-Kutta Chebyshev methods [1]. Another suitable class of methods is
the class of Local Linearization (LL) methods that reduce to some exponential Runge-Kutta (RK) methods when
applied to semilinear ODEs. Mora [3] and Carbonell et al. [2] have proposed weak second order LL methods for
SDEs with additive noise.
In this talk, we will propose new exponential RK methods which give weak approximations for multi-dimensional,
non-commutative SDEs with a semilinear drift term. Their convergence order and stability properties will be
confirmed in numerical examples.
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Structure-preserving Runge-Kutta methods for stochastic
Hamiltonian equations with additive noise

P. Burragea and K. Burrageb

a Queensland University of Technology, Australia
b University of Oxford and Queensland University of Technology

There has been considerable recent work on the development of energy conserving one-step methods that are not
symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that
there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian,
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but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations
illustrate the performance of these methods.

Solving Stiff Stochastic Differential Equations with a Stabilized
Multilevel Monte Carlo Method

A. Blumenthal and A. Abdulle

ANMC, MATHICSE, EPF Lausanne, Switzerland

We introduce a new stabilized multilevel Monte Carlo (MLMC) method for mean square stable stochastic differ-
ential equations with multiple scales, problems that we call stiff. Due to time stepsize restriction on the fastest
scales, not all levels of the standard MLMC approach based on classical explicit methods can be exploited, and
thus, the performance of such MLMC methods deteriorates. Turning to explicit stabilized numerical integrators
[1] and balancing the stabilization procedure simultaneously with the hierarchical sampling strategy of MLMC
methods, we show that the computational complexity for stiff systems is significantly reduced. The computational
algorithm of this new stabilized MLMC method remains fully explicit and easy to implement [2].
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A review on numerical schemes for solving a linear stochastic
oscillator

M.J. Senosiain and A. Tocino

University of Salamanca, Spain

In recent years several numerical methods to solve a linear stochastic oscillator with one additive noise have
been proposed. The usual aim of these approaches was to preserve different long time properties of the oscillator
solution, namely, symplecticity, linear growth of its second moment and asymptotic oscillation around zero,
among others. In this work we show that these features can be studied in terms of the coefficients of the matrices
that appear in the linear recurrence obtained when the schemes are applied to the oscillator.
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Monotone approximation schemes for linear parabolic PDEs by
weak SDE approximation methods

K. Debrabanta and E.R. Jakobsenb

a Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
b Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway

In this talk we consider equations of the form

ut =
1

2
tr[σ(t, x)σ⊤(t, x)D2u(t, x)] + b(t, x)Du(t, x) + c(t, x)u+ f(t, x) in (0, T ]× RN ,

u(0, x) = g(x) in RN ,

containing e. g. the Black–Scholes PDE.
We show how weak approximation schemes for the solution of stochastic differential equations can be used to
obtain new higher order monotone PDE approximation methods. Some stability and convergence results are
given, including convergence for coefficients which are only bounded and Lipschitz continuous, and the methods
are applied to some examples.

Computing deterministic quadrature rules for marginals of SDEs.

L. Yaroslavsteva and T. Müller-Gronbach

University of Passau, Germany

We consider the problem of approximating the marginal distribution of the solution of an SDE by probability
measures with finite support. We study deterministic algorithms in a worst case analysis w.r.t. classes of SDEs,
defined in terms of smoothness constraints on their coefficients. The cost of an approximation is given by the
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sum of the size of its support and the number of evaluations of the coefficients used to compute the corresponding
nodes and weights. The error is defined as the worst case quadrature error of the resulting quadrature rule over
a class of test functions. We present sharp asymptotic lower and upper bounds on the respective N-th minimal
errors in terms of the smoothness of the coefficients and the test functions. Moreover, we present an algorithm,
which is based on a space discretization of a weak Taylor scheme and a support reduction strategy. It is easy to
implement and it performs asymptotically optimal in many cases. We also show numerical examples.
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MS23 – Geometric Numerical Integration for PDEs
Organized by: Erwan Faou

Hamiltonian splitting methods for Vlasov equations and Landau
damping

E. Faou

INRIA & ENS Cachan Bretagne & ENS Paris, France

We will consider Hamiltonian splitting methods applied to Vlasov-like equations in the context of semi-Lagrangian
methods. We will show how the algebraic structure of the Vlasov-Poisson equation arising in Plasma Physics
allows to derive efficient high order methods possessing strong geometrical properties. We will then analyze the
long time behavior of these methods, that is the numerical reproduction of the Landau damping phenomenon
over long times.
These are joint works with Fernando Casas, Nicolas Crouseilles, Michel Mehrenberger and Frédéric Rousset.

Stability in the presence of transport terms

A. Iserles

University of Cambridge, United Kingdom

Numerous PDEs are of the form ut+V (x) ·∇u = L(u, x, t), where L is an operator, e.g. convection–diffusion, the
forward Kolmogorov equation, the Fokker–Planck equation and the Bolzmann equation. Once this equation, on
an arbitrary grid, is discretised using finite differences, in tandem with splitting (e.g. the Strang splitting), the
discretisation of transport terms −V · ∇u is typically unstable. In this talk we prove that such a discretisation is
always stable as long as differentiation is approximated with a skew-symmetric matrix but that skew-symmetry
on an arbitrary grid is generically consistent with just first-order approximation. We derive conditions that
guarantee high-order skew-symmetric approximation of the first derivative and present a method to construct
matrices of this kind which are, in addition, banded.
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Composition methods based on an almost symmetric
Strang splitting

A. Ostermann and L. Einkemmer

Department of Mathematics, University of Innsbruck, Austria

Compared to standard integrators, splitting methods often have superior geometric properties. Moreover, high-
order schemes can easily be obtained by composition of Strang splitting, whenever the exact partial flows (or
semi-flows) are employed. In certain applications, however, only numerical approximations to these flows are
available. This is particularly true for many non-linear problems. In such a situation, Strang splitting looses
symmetry, and consequently the related composition schemes exhibit severe order reductions.
In this talk, it will be shown how high order composition schemes can be recovered. The procedure is illustrated
with typical examples from ordinary and time dependent partial differential equations that arise in applications.
This talk is based on the recent paper [1].
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Implicit-Explicit Runge-Kutta schemes for optimal control problems
and applications to PDEs

L. Pareschi

Department of Mathematics and Computer Science, Università di Ferrara, Italy

Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential sys-
tems governed by stiff and non-stiff terms. In this talk we discuss order conditions and symplecticity properties
of a class of IMEX Runge-Kutta methods in the context of optimal control problems. Using suitable transfor-
mations of the adjoint equation, order conditions up to order three are proven as well as the relation between
adjoint schemes obtained through different transformations is investigated. Conditions for the IMEX Runge-
Kutta methods to be symplectic are also derived. Applications to some partial differential equations are finally
presented.
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MS24 – Fast direct linear solvers for elliptic partial differential
equations

Organized by: Eric Darve, Mario Bebendorf, Xiaoye Sherry Li, Luc Giraud and Esmond Ng

Robust LU factorization with logarithmic-linear complexity

M. Bebendorf

University of Bonn, Germany

The factors of the LU factorization of discrete elliptic boundary value problems can be approximated with
logarithmic-linear complexity using the methodology of hierarchical matrices. While it is known that the smooth-
ness of the differential operator’s coefficients does not enter the complexity, only empirical results on the influence
of the coefficient’s contrast are available. In this talk, we present a recent analysis of this influence.

A task-based H-matrix solver for acoustic and electromagnetic
problems on multicore architectures

B. Lizea, G. Sylvanda, E. Agullob and S. Thibaultb

a EADS, France
b INRIA, France

H-Matrix [1, 2] is a hierarchical, data-sparse approximate representation of matrices that allows the fast approx-
imate computation of matrix products, LU and LDLT decompositions, inversion and more. This representation
is suitable for the direct solution of large dense linear systems arising from the Boundary Element Method in
O(N logα2 (N)) operations. However, the recursive and irregular nature of these algorithms makes an efficient par-
allel implementation more challenging, especially when relying on a ”Bulk Synchronous Parallel” paradigm [3].
We consider an alternative parallelization for multicore architectures using a task-based approach on top of a
runtime system [4]. We show that our method leads to a highly efficient, fully pipelined computation on large
real-world industrial test cases in acoustics and electromagnetism.
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A direct solver with O(N) complexity for a spectral multidomain
method

P.G. Martinsson

University of Colorado at Boulder, United States

The talk describes a highly accurate technique for solving elliptic PDEs with variable coefficients and smooth
solutions. The domain is tessellated into squares (or cubes), and the differential operator is discretized via high
order (p=10 or 20) spectral differentiation on each square. A hierarchical direct solver is used to solve the
resulting discrete system. The method is very efficient; e.g., a Helmholtz problem on a domain of size 200x200
wavelengths is solved to ten digits of accuracy in ten minutes on a standard laptop (using 6M degrees of freedom).

Conditioning of incomplete Cholesky factorizations
with orthogonal approximations

A. Napov

Universite Libre de Bruxelles, Belgium

We consider incomplete Cholesky factorizations based on orthogonal approximations for the iterative solution
of symmetric positive definite linear systems. Such factorizations correspond, for instance, to some existing fast
direct solvers based on low-rank approximations and which are used with large approximation threshold. Large
threshold enables a cheaper factorization, but the resulting solution is less accurate and additional solution steps
may be required to refine it, yielding an iterative solver. The number of iterations then depends on the condition
number of the preconditioned system, and we show that this latter may be bounded depending only on the
accuracy of the individual approximations. The resulting bound is illustrated with some existing factorization
algorithms in the context of discretized elliptic partial differential equations.
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MS25 – Numerical solution of integral and integral-algebraic
equations of Volterra type

Organized by: Mikhail Bulatov and Pedro Lima

Numerical solution of integro-algebraic equations by multistep
methods

M. Bulatova and O. Budnikovab

a Institute for Systems Dynamics and Control Theory, SB of RAS, Russian Federation
b East Siberian State Academy of Education, Russian Federation

Multistep methods are proposed for numerical solution of linear integro-algebraic equations of index one. The
algorithms are based on explicit Adams’s quadrature formulas and extrapolation formulas. Conditions for the
convergence of such algorithms to the exact solution are given. Stability regions have been built.
The work was supported RFBR Grants 11-01-00639-a and 13-01-93002 Viet-a.

On Properties of Integral Algebraic Equations with Rectangular
Coefficient Matrices

V. Chistyakov

Institute for Systems Dynamics and Control Theory, SB of RAS, Russian Federation

In this talk we consider systems of Volterra integral equations

(Λ0 + V)x = A(t)y +

t∫
α

p(t, s)K(t, s)x(s)ds = ψ(t), t ∈ T = [α, β], (1)

where A(t), K(t, s) are (m × n) matrices, p(t, s) = 1 or p(t, s) = (t − s)−γ , γ ∈ (0, 1), x ≡ x(t), ψ(t) are the
desirable and given vector-functions, correspondingly. It is assumed that the following condition holds

rankA(t) < min{m, n} ∀t ∈ T. (2)

If m = n, then (2) is equivalent to detA(t) = 0 ∀t ∈ T . Such systems are commonly called integral algebraic
equations (IAEs). They appear when modeling developing dynamical systems (based on the Glushkov model)
and analyzing game problems. We give sufficient conditions for solvability of (1) satisfying (2). The methods of
investigation are based on the results from [1, 2].
This work has been supported by RFBR, Projects No. 11-01-00639 and No. 13-01-93002.
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Solving delay differential equations with diagonally implicit
Runge–Kutta methods

A. Eremina and A.R. Humphriesb

a Saint-Petersburg State University, Russian Federation
b McGill University, Canada

In case of so-called overlapping, when in delay differential equations a delay becomes smaller than the step-size,
the standard implementation of continuous Runge–Kutta methods (CRKs) makes the methods fully implicit.
Pioneering works by L. Tavernini and recent comprehensive papers by a group of Italian authors show how explicit
methods can be applied explicitly even with overlapping. In search of better stability properties we adapt the same
technique for Diagonally Implicit CRKs preserving their diagonal structure in the case of overlapping. Methods
of different orders are constructed. Problems of practical implementation are also studied: error estimation,
automatic step-size control, interpolant overshoot, combining methods for better efficiency etc.
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Analysis and Numerical Approximation of the Generalized Density
Profile Equation

P. Limaa, G.Y. Kulikova and M.L. Morgadob

a CEMAT, Instituto Superior Tecnico, Lisboa, Portugal
b Dep. Mathematics, UTAD, Vila Real, Portugal

We are concerned with a generalization of the Cahn-Hilliard continuum model for multiphase fluids [1] where the
classical Laplacian has been replaced by a degenerate one (so-called p-Laplacian). Using spherical symmetry, the
model can be reduced to a boundary value problem for a second order nonlinear ordinary differential equation.
One searches for a monotone solution of this equation which satisfies certain boundary conditions. The case of
the classical Laplacian was studied in detail in [2] and [3]. In the present work, it is proved that the arising
boundary value problem possesses a unique strictly monotone solution The asymptotic behavior of the solution
is also analyzed at two singular points; namely, at the origin and at infinity. An efficient numerical technique
for treating such singular boundary value problems is presented, based on the shooting method and on nested
implicit Runge-Kutta formulas with global error control.
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Sinc-collocation methods for Volterra integro-differential equations

T. Okayama

Hitotsubashi University, Japan

In this talk, numerical schemes by means of Sinc methods for Volterra integro-differential equations

u′(t) = g(t) + µ(t)u(t) + V[u](t), a ≤ t ≤ b,

u(a) = ua

are considered. Here, g and µ are known functions, u is the solution to be determined, and V is the Volterra
integral operator defined by V[f ](t) =

∫ t

a
k(t, r)f(r) dr, where k(t, r) is a known function. As a related study,

Zarebnia [1] reduced the given equations to Volterra integral equations, and applied the Sinc-Nyström method
developed by Muhammad et al. [2]. However, the computational cost of the method is relatively high, because the
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approximate solution includes double summation. Instead, a Sinc-collocation method is developed in this study,
where only single summation is included. This study further improves the method by replacing the standard
variable transformation with the trending one [3].
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Session CS01 – Stochastic partial differential equations

Mean-square convergence order of a stochastic symplectic
semi-discrete scheme for the stochastic Schrödinger equation

Ch. Chen and J. Hong

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

A stochastic symplectic semi-discrete scheme in temporal direction is proposed for the stochastic Schrödinger
equation in Stratonovich sense. To study its convergence order, a convergence theorem is presented. It establishes
the relationship between the mean-square convergence order of a semi-discrete scheme and its local error. Based
on it, we show that the semi-discrete scheme has mean-square order 1 under appropriate assumptions.
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Sobolev Type Nonlocal Fractional Stochastic Control Systems in
Hilbert Spaces

A. Debbouche

Department of Mathematics, Guelma University, Guelma, Algeria

In this talk, we study a class of Sobolev type fractional control nonlocal functional differential equations in a
Hilbert space. The results are obtained by using fractional calculus, semigroup theory, fixed point technique
and optimal control. An appropriate set of sufficient conditions for the main results of the considered system is
constructed and proved. As an application that illustrates the abstract results, provided examples are given.
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Effective computer simulation of the stochastic transport equation

H. de la Cruza and C.H. Oliverab

a School of Applied Mathematics-EMAp/FGV, Brazil
b University of Campinas, Brazil

In this work we propose a new computational scheme for the effective simulation of the stochastic transport
equation. For constructing the method, a suitable exponential-based approximation to the solution of an as-
sociated auxiliary random integral equation, together with an adapted Padé method with scaling and squaring
strategy are conveniently combined. Results on the convergence of the suggested method and details on its effi-
cient implementation are presented. The performance of the introduced method is illustrated through computer
simulations

Stochastic Multi-symplectic Preissman Scheme for Stochastic
Maxwell Equations

L. Zhang, J. Hong and L. Ji

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

Based on the stochastic multi-symplectic form of stochastic Maxwell’s equations proposed by Hong et al. recently,
we give a stochastic multi-symplectic Preissman scheme for 3D stochastic Maxwell equations. We show that the
numerical scheme satisfies discrete stochastic multi-symplectic conservation law. And it preserves the discrete
local and global evolving energy conservation law exactly.
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Session CS02 – Time integration of partial differential equations

Geometric Time Integration and absorbing boundary conditions.
A case study

I. Alonso-Mallo and A. Portillo

IMUVA, Universidad de Valladolid, Spain

We are concerned about the confluence of two subjects of the numerical solution of time evolution PDEs: numeri-
cal methods that preserve geometric properties of the flow and absorbing boundary conditions used to reduce the
computation to a finite domain. We pay attention to the time stability. The stability regions of time integrators
are revisited. Since geometric methods are not always A-stable, it is necessary a suitable behavior of the real
part of the eigenvalues of the spatially discretized problem to avoid in practice any time instability. The study is
carried out for the one dimensional wave equation discretized with finite differences. Some numerical experiments
confirm our results.

References

[1] I. Alonso-Mallo and A.M. Portillo, Absorbing boundary conditions and geometric integration: a case study
for the wave equation, submitted.

[2] E. Hairer, E. Lubich and G. Wanner, Geometric numerical integration. Structure-preserving algorithms for
ordinary differential equations. Second edition, Springer, Berlin, 2006.

[3] L. Halpern, Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave
Equation, Math. Comput. 38 (1982), pp. 415–429.

Laplace-finite element methods for integro-differential equations of
Volterra type

J.A. Ferreiraa, S. Barbeiroa and S. Bardejib

a CMUC, Department of Mathematics, University of Coimbra, Portugal
b University of Coimbra, Portugal

In this talk we consider numerical methods for integro-differential problems based on time discretization via
Laplace transformation. We focus our attention in models arising in the context of non Fickian solute transport
phenomena in porous media. The mathematical models which describe the evolution of the solute concentrations
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are characterized by Volterra equations. We present and analyze hybrid methods which combines the Laplace
transformation with respect to the time variable with the finite element discretizations in the spatial variables.
Numerical results illustrating the performance of the methods are included.

Delay-dependent stability of high order time discretizations for
delay partial differential equations

Ch. Huanga and S. Vandewalleb

a School of Mathematics and Statistics, Huazhong University of Science and Technology, China
b KU Leuven - University of Leuven, Belgium

This talk is concerned with the stability of difference methods for partial differential equations (PDEs) with time-
delay. By using a variant of the classical second-order central differences to discretize the spatial derivatives,
we first obtain a semi-discrete system, which is a set of ordinary differential equations in the time variable.
Then, the time discretizations based on Runge-Kutta methods with a non-constrained mesh are applied, where
an equi-stage interpolation procedure is employed to approximate the delay argument. We establish a general
stability criterion which can guarantee that the fully discrete system completely preserves the delay-dependent
stability of the PDE test problem under consideration. Some high order methods with certain linear or parabolic
interpolation are proved to satisfy this criterion. Finally, numerical experiments are presented to confirm the
theoretical results.

Geometric integration of two coupled wave equations with
absorbing boundary conditions

A. Portillo and I. Alonso-Mallo

IMUVA, Universidad de Valladolid, Spain

Initial value problems with two coupled wave equations are considered. The problem is discretized in space using
fourth order implicit finite differences. In order to reduce the computation to a bounded domain, absorbing
boundary conditions are deduced. Well posed systems with fifth order of absorption for the diagonalizable case,
and third order of absorption for the non diagonalizable one, are obtained. When a part of the solution reaches
the boundary and it is absorbed, another part of the solution is still inside the computational interval, where it
is important to preserve its geometric properties. This fact supports the simultaneous use of absorbing boundary
conditions and symplectic integrators. Numerical experiments are displayed.
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Session CS03 – DAEs and PDAEs

Index Reduction for Semi-explicit Operator DAE’s

R. Altmann

Technische Universität Berlin, Germany

The talk is devoted to semi-explicit operator differential equations of the form

u̇(t) +Ku(t) +B∗λ(t) = F (t),

Bu(t) = G(t)

with given initial value. Because of the saddle point structure, standard semi-discretization schemes in space such
as finite elements lead to a differential-algebraic equation (DAE) of index 2. Thus, we call the above equation
an operator DAE. An example of a system with this structure is given by the Navier-Stokes equations, where B
equals the divergence operator and λ stands for the pressure.
For a certain class of constraint operators B, we present a reformulation of the above system, which can be seen
as an index reduction procedure on operator level. By this we mean that a semi-discretization of the reformulated
system gives a DAE of index 1. The presented method is based on the index reduction technique of minimal
extension [1].
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Stable and efficient simulation of PDAEs describing flow networks

Ch. Huck, C. Tischendorf and L. Jansen

Humboldt University of Berlin, Germany

We are interested in partial differential algebraic equations (PDAEs) describing flow networks. These PDAEs
consist of hyperbolic PDEs of the type

pt +Amx = 0

mt +Bpx +H +G(m)m = 0
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which are coupled with algebraic boundary conditions. For our simulation approach we use the method of lines,
yielding a differential algebraic equation (DAE) which is adaptively discretized in time.
We present a perturbation analysis for a simplified prototype motivated by the system above for different types
of space discretizations. In particular we will show that the index of the resulting DAEs may depend on the
chosen space discretization.
Additionally, we present a network topologically dependent space discretization guaranteeing DAEs of index 1.
Furthermore we study a network topological procedure to reduce the resulting DAEs into semi-explicit systems
of the form

x′ = f(x, t)

y =Mx+ r(t).

On solution of differential-algebraic equations by
collocation-variation splines

L. Solovarova and M. Bulatov

Institute for Systems Dynamics and Control Theory, SB of RAS, Russian Federation

Numerical methods for solving initial value problems for differential-algebraic equations are proposed. The
approximate solution is represented as a continuous vector spline whose coefficients are found using the collocation
conditions stated for a subgrid with the number of collocation points less than the degree of the spline and the
minimality condition for the norm of this spline in the corresponding spaces. Numerical results for some model
problems are presented.
The work was supported RFBR Grants 11-01-00639-a and 13-01-93002 Viet-a.

Numerical stability of Runge-Kutta methods for neutral delay
differential-algebraic equations

H. Tian, Q. Yu and J. Kuang

Shanghai Normal University, China

This talk is concerned with asymptotic stability of linear neutral delay differential-algebraic equations and Runge-
Kutta methods. First, we give a new equivalent sufficient condition for the neutral delay differential-algebraic
equations to be delay-independently asymptotically stable. Then we investigate the asymptotic stability of the
numerical solutions generated by the Runge-Kutta methods combined with Lagrange interpolation. Some results
on the asymptotic stability of Runge-Kutta methods of high order are given. Finally, numerical examples of
index-1 and index-2 are conducted to confirm our numerical stability result.
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Session CS04 – Delay differential equations

Solvability analysis and reformulation of general Linear Delay
Differential-Algebraic Equations

P. Ha, V. Mehrmann and A. Steinbrecher

Technische Universität Berlin, Germany

Delay differential equations (DDEs) arise in a variety of applications, including physical systems, biological
systems and electronic networks. If the states of the physical system are constrained, e.g., by conservation laws
or interface conditions, or some economical interest are involved in the biological model, then algebraic equations
have to be included and one has to analyze delay differential-algebraic equations (Delay-DAEs).
In this talk, we present our recent result on the solvability analysis of general linear Delay-DAEs, i.e., systems
with linear time variable coefficients. We propose the method to reformulate a Delay-DAE into its underlying
delay system, which can be used to address structural properties of the system like existence and uniqueness
of a solution, consistency and smoothness requirements. We also consider some spectral properties of Linear
Delay-DAEs and their relations to the solvability analysis of the system.
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A delay differential equation describing the evolution
of a Herpes virus

E.K. Jaafar and K. Niri

Université Hassan 2 , Faculté des sciences Ain Chock Casablanca, Morocco

We study a model describing the evolution of a Herpes simplex virus type 2. A delay differential equation is
used to model the disease spread. Sufficient conditions of Strong monotonicity and global stability are given.
Theoretic results are illustrated by numerical simulations for realistic data.
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Polynomial chaos expansion and stability analysis of uncertain
DDEs

R. Vermiglioa, A. Ernb and O. Le Maîtrec

a University of Udine, Italy
b CERMICS, Ecole des Ponts, Paris Tech, France
c LIMSI, CNRS, Paris, France

Many problems in science and engineering are modeled with systems of delay differential equations (DDEs).
Since they are infinite dimensional dynamical systems, the stability analysis requires effective numerical methods.
Beside the mathematical model and the numerical method, another relevant aspect is the specification of the
data. The uncertainty in the model constants are often modeled as random processes.
The Polynomial Chaos (PC) expansion provides a representation of random variables, vectors and processes with
respect to a basis set of functionals, usually orthogonal polynomials. It is based on the original Wiener’s theory
of homogeneous chaos [2] and it has been successfully applied in different fields for uncertainty quantification e.g.
[1].
We propose to apply PC expansion to quantify the resulting uncertainty in the numerical stability analysis of
equilibria of DDEs with random parameters. We introduce some basic ideas and we present preliminary results.
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Session CS05 – Molecular Dynamics

Stochastic correction of kinetic energy spectra in fluids

J. Franka, J. Bajarsb, K. Myerscoughb and B. Leimkuhlerc

a Universiteit Utrecht, Netherlands
b CWI - Center for Mathematics & Computer Science, Netherlands
c University of Edinburgh, United Kingdom

Both conservative and diffusive truncations of inviscid fluid models fail to capture the correct power law scaling
of the kinetic energy spectrum at small scales. This scaling is important both for downscale transport of vorticity
and energy, as for small upscale ‘backscatter’ that influences variance. In this talk we discuss a simple correction
using a stochastic thermostat approach from molecular dynamics. Thermostats are used in MD to perturb
dynamics such that trajectories are ergodic in the canonical Gibbs measure (constant temperature). To apply
these methods to discretized fluids, several challenges must be met: (i) we perturb only the smallest scales, hence
controllability must be established; (ii) we are given expectations (kinetic energy spectrum) instead of invariant
measure; (iii) we have to deal with forcing at low wave numbers; (iv) experience from heat conduction problems
suggests that artifacts may occur. We report recent progress on these fronts [1, 2].
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A Lagrangian method for numerical analysis of distributed vortical
dynamics

V. Govorukhin

Rostov-on-Don, Russian Federation

The variant of vortex-in-cells method originally presented in [1, 3] is developed. The equations are the geo-
physical models of the atmosphere in terms of stream function and vorticity. The method is based on vorticity
approximation using its values in particles and the velocity finding by Galerkin method. Computed velocity is
used for fluid particles trajectories calculation as ODE system solution.
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The effectiveness of integrator is important for the solution of similar problems. The set of different integrators is
studied on a number of test problems of particles dynamics. As a result the most suitable methods are suggested.
The algorithm of adaptive choice of integrator based on fluid particles locations is offered.
The algorithm for studing the topological structure of vortex configurations and their structural stability is sug-
gested. The effectiveness of numerical methods are illustrated by results of fluid dynamics problems investigation
[2].
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Molecular dynamics simulation of lubricant adsorption and
depletion under heat treatment

B. Li and C.H. Wong

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Understanding the surface dynamics of thin oligomeric films under heat treatment is of fundamental importance
in maintaining the stability and reliability of interfacial surfaces for micro- and nano-devices. In this work,
the coarse-grained molecular dynamics simulation is employed to study the thermal adsorption and depletion
instability of thin perfluoropolyether (PFPE) lubricant. The bead number density is examined to quantify the
lubricant adsorption on the surface. The lubricant weight and bond losses are calculated to provide a real-time
monitoring of lubricant depletion during rapid heating. Moreover, the depletion kinetics shows that lubricant
desorption is favored over decomposition under heat treatment to high temperatures and is the major cause of
lubricant degradation on the surface. Therefore, a novel PFPE lubricant suitable for heat assisted magnetic
recording should be designed and engineered to overcome the prone to desorption for future hard disk drive
applications.
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Multilevel Summation for Dispersion: A Linear-Time Algorithm for
r−6 Potentials

D. Tamelinga, P. Springera, P. Bientinesia and A.E. Ismailb

a AICES Graduate School, RWTH Aachen University, Germany
b RWTH Aachen University, Germany

The multilevel summation method (MLS) was introduced to evaluate long-range interactions in molecular dy-
namics (MD) simulations. Based on a multilevel matrix summation, [3] MLS was initially developed for Coulomb
potentials [1, 2]; with this work, we extend MLS to dispersion interactions. While formally short-ranged, for
an accurate calculation of forces and energies in cases such as interfacial systems, dispersion potentials require
long-range methods. Since long-range solvers tend to dominate the time needed to perform MD calculations,
increasing their performance is of vital importance. Compared to other long-range solvers, such as mesh-based
Ewald and fast multipole methods, MLS is particularly attractive for its ability to handle all forms of boundary
conditions and for its linear performance. We discuss how the implementation of MLS for dispersion potentials
differs from the Coulomb case, and present results establishing the accuracy and efficiency of the method.
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Session CS06 – Implementation issues

Inexact Fixed Point Schemes and Applications in Scientific
Computing

Ph. Birken

University of Osnabrück, Germany

We consider fixed point schemes, where the function evaluation corresponds to inexact solves of linear or nonlinear
equation systems. This allows to decide how accurate these systems should be solved to obtain a target error in
the fixed point iteration, as well as to decide on a good termination criterion.
The first applicaton is the Picard iteration which is widely used for the incompressible Navier-Stokes equations.
Here we can show that this iteration converges regardless of how accurate we solve the subsystems, provided a
relative termination criterion is employed.
As a second example, we consider thermal fluid structure interaction problems where heat is exchanged via a
coupling interface. This appears in many applications, for example in the cooling process in steel forging. A so
called partitioned coupling approach naturally leads to a fixed point iteration, which is then analyzed using the
derived methodology.

A pre-fetched BiCGSTAB method in the solution of the trapezoidal
rule of large ODEs

S. Nakamuraa, K. Ozawaa and T. Mitsuib

a Faculty of System Science, Akita Prefectural University, Japan
b Department of Mathematical Science, Doshisha University, Japan

We are concerned with an efficient numerical solution of linear equations at each time-stepping of the trapezoidal
rule applied to a system of linear ordinary differential equations (ODEs) with a constant coefficient matrix of
large dimension. We do not assume that the matrix is symmetric. Hence numerical solutions in the family of
BiCG method are sought. We propose a method to reuse Krylov subspaces in the BiCGSTAB process over a
number of computational steps [1]. It can suppress increase of the memory usage as well as reduce the total
number of BiCGSTAB iterations. An influence of the non-autonomous term of ODEs is analyzed on the efficiency
of our algorithm. Numerical examples depict its efficiency.
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An iterative starting method for multistep methods and its impact
on Hamiltonian systems

T. Norton

University of Bath, United Kingdom

Starting methods are used to obtain the inputs for multistep methods. For linear multistep methods, inputs
are sufficiently accurate solution approximations over several time-steps. For general linear methods, inputs
of greater complexity may be required. In either case, a poorly constructed starting method can render the
multistep method useless.
In this talk, we introduce an iterative starting method that approximates the ideal starting method to arbitrary
accuracy and investigate the impact of such an initialisation on several Hamiltonian problems.

Two-Step Symmetrization with Extrapolation

N. Razali and R.P.K. Chan

The University of Auckland, New Zealand

The use of Richardson extrapolation in accelerating convergence of a sequence is more efficient if the method has
the h2-asymptotic error expansion. Gragg first proved the existence of this property for the explicit midpoint rule
in ordinary differential equations. He introduced the concept of smoothing to suppress the oscillatory parasitic
component of the numerical solution and showed the advantage of smoothing applied with extrapolation [2]. In
[1], this concept is generalized to arbitrary symmetric Runge-Kutta methods and called symmetrization. The
two-step symmetrizer for the implicit midpoint and trapezoidal rules was constructed in [3]. In this talk, we
discuss the advantages of using a one-step symmetrizer and investigate what other improvements there are in
using two-step symmetrizers. We present experimental results that show the two-step symmetrizer can be more
accurate and efficient in certain cases.
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Rosenbrock-Krylov time stepping methods

A. Sandu and P. Tranquilli

Virginia Tech, United States

This talk discusses a new class of Rosenbrock-type integrators based on a Krylov space solution of the linear
systems. The new family, called Rosenbrock-Krylov (Rosenbrock-K), is well suited for solving large scale systems
of ODEs or semi-discrete PDEs. The time discretization and the Krylov space approximation are treated as
a single computational process, and the Krylov space properties are an integral part of the new Rosenbrock-
K order condition theory developed herein. Consequently, Rosenbrock-K methods require a small number of
basis vectors determined solely by the temporal order of accuracy. The subspace size is independent of the
ODE under consideration, and there is no need to monitor the errors in linear system solutions at each stage.
Numerical results show favorable properties of Rosenbrock-K methods when compared to current Rosenbrock
and Rosenbrock-W schemes.
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Session CS07 – Stochastic differential equations

New adaptive method for variance reduction using approximating
martingales

T. Badowski

Freie Universität Berlin, Germany

Approximating martingales method [1] is a variant of control variates method which can be used to reduce the
variance of estimators of certain quantities defined for Markov chains, including their expected hitting times of
sets. We introduce a new method for choosing adaptively the function u [2] needed to construct the approximating
martingale, to reduce the variance. As opposed to the well-known sample variance minimization method [2], the
new method can be applied even when the number of performed simulations is lower than the number of basis
functions used in the linear parametrization of u. In our numerical experiments we demonstrate that the new
method can achieve on average high variance reductions and that it can significantly outperform the sample
variance minimization method.
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Convergence and stability analysis of stochastic delay differential
equations

Q. Guo, W. Xie, T. Mitsui and X. Tao

Shanghai Normal University, China

We introduce multistage methods to numerically solving stochastic delay differential equations, for instance
stochastic Hopfield neural networks. With additional conditions, the methods are proved to have a strong
convergence. Further, mean-square stability and almost surely stability of the proposed methods are investigated.
Numerical experiments illustrate the computational efficiency of the methods.
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Fundamental Convergence Theorems of Numerical Methods for
SDEs

J. Hong and Ch. Chen

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

In this talk we review theoretical results on the mean-square convergence of numerical methods for stochastic
ordinary differential equations, stochastic delay differential equations, neutral stochastic delay differential equa-
tions, jump-diffusion differential equations, neutral stochastic delay differential equations with jump-diffusion,
stochastic partial differential equations and backward stochastic differential equations. These results are called
fundamental convergence theorems of numerical methods for stochastic differential equations.

Weak backward error analysis for Langevin process

M. Kopec, A. Debussche and E. Faou

ENS Cachan Bretagne, France

We consider numerical approximations of stochastic Langevin equations by implicit methods. We show a weak
backward error analysis result in the sense that the generator associated with the numerical solution coincides with
the solution of a modified Kolmogorov equation up to high order terms with respect to the stepsize. This implies
that every measure of the numerical scheme is close to a modified invariant measure obtained by asymptotic
expansion. Moreover, we prove that, up to negligible terms, the dynamic associated with the implicit scheme
considered is exponentially mixing.
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Session CS08 – Modelization and Simulation

Towards multiscale modelling in neuroscience: Experiences with
coupling cellular and subcellular levels of neuronal organisation

M. Hanke, M. Brandi, E. Brocke and M. The

KTH Royal Institute of Technology, Sweden

The nervous system encompasses structure and phenomena at different spatial and temporal scales from molecule
to behavior. For example, the dynamics of second messenger pathways can be formulated as stochastic reaction-
diffusion systems while the electrical dynamics of the neuronal membrane is often described by compartment
models and the Hodgkin-Huxley formalism. While there are a few simulators available which aim at bridging
this gap, most readily available packages are designed for a given domain.
In the present talk we report about our experiences with coupled systems both in matlab reference implemen-
tations and in coupling established software packages (MOOSE and NeuroRD). We analyse the properties of
the underlying numerical methods for solving ordinary and stochastic differential equations and propose new
methods for their enhancement.
We acknowledge the support of our collaborators Uphinder S Bhalla, Mikael Djurfeldt, Jeanette Hellgren-
Kotaleski.

Reduction of chemical reaction networks through delay
distributions

A. Leiera, M. Barriob and T. Marquez-Lagoa

a Okinawa Institute of Science and Technology, Japan
b Departamento de Informatica, Universidad de Valladolid, Spain

Stochastic simulations of large chemical reaction networks come at significant computational costs. Here, we
present a reduction methodology [1] that represents monomolecular reaction systems by much simpler, abridged
models. These can be simulated at significantly lower computational costs while retaining accuracy. The abridge-
ment is achieved by generation of model-specific delay distributions, fed into a delay stochastic simulation al-
gorithm. We show how such delay distributions can be analytically described whenever the system is solely
composed of consecutive first-order reactions yielding an exact reduction. For models including other types of
monomolecular reactions such as constitutive synthesis or degradation, we adopt a numerical approach for its
accurate stochastic representation. We anticipate the use of delays in model reduction will greatly alleviate some
of the current restrictions in simulating large sets of chemical reactions.
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A nonFickian coupled model for diffusion in porous media

G. Pena and J.A. Ferreira

CMUC, Department of Mathematics, University of Coimbra, Portugal

Diffusion processes in porous media are usually simulated considering the classical diffusion equation coupled
with Darcy’s law. In certain scenarios, the diffusion equation induces an anomalous behavior and consequently
several improvements were introduced in the literature to overcome them. One approach is to replace the classical
Fickian law for the mass flux by a differential equation that should be coupled with a mass conservation law.
In this talk we consider models for diffusion process in porous media constructed coupling Darcy’s law with the
previous models. The qualitative behavior and numerical simulation will be addressed.
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Session CS09 – General linear methods

The order of G-symplectic methods

J. Butcher and G. Imran

The University of Auckland, New Zealand

G-symplectic general linear methods with zero parasitism growth factors are able to preserve quadratic invariants
and symplectic structure in a similar way to canonical Runge–Kutta methods. To obtain order p for a method
(A,U,B, V ), it is necessary that ξ exists such that

(Eξ)(t) = B(Dη)(t) + V ξ(t),

for all t such that |t| ≤ p, where
η = AηD + Uξ.

If the method is G-symplectic the order conditions are interrelated and can be reduced to a smaller set. The
special case of order 4 methods with V = diag(1,−1) will be considered in detail. Although there are only two
order conditions, there are additional constraints on a possible starting method, represented by ξ. This should
not be regarded as a serious handicap because, in a constant step size implementation, a complicated starting
method does not represent a computational overhead.

On the construction of sequential second derivative general linear
methods

G. Hojjati and A. Abdi

University of Tabriz, Tabriz, Iran Islamic Republic Of

Second derivative diagonally implicit multistage integration methods (SDIMSIMs) as a subclass of SGLMs have
been introduced in [1] in four types, together with their intended applications (for nonstiff or stiff ODEs) and
architectures (sequential or parallel). Order barriers for parallel SDIMSIMs, of type four and generalized type
four and also for sequential SDIMSIMs of type 2 with Runge–Kutta stability (RKS) property have been discussed
in [1, 2]. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are
obtained by solving linear system of order conditions and usually nonlinear system of RKS conditions. In this
survey, we introduce a new formula which causes the order conditions and the stability matrix of SGLMs take
simpler form and decreases the complexity of finding coefficients matrices. The constructed A-stable methods
are also L-stable.
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Runge–Kutta methods satisfying conjugate order conditions

G. Imran and J.C. Butcher

The University of Auckland, New Zealand

It is known that it is impossible to find explicit Runge–Kutta methods with only five stages and with order five.
While this is true, a slight modification of the meaning of ”Order” makes it false. This generalisation is known
as ”Effective Order” and can be explained in terms of group conjugacy. The derivation of fifth effective order
methods involves 10 order conditions but for convenience we can use simplifying assumptions to make derivation
easier. In particular, we have found some new effective order five methods using the C(2) assumption; this leads
to simpler and more direct derivation of these methods. Also, we have investigated other cases and reached some
conclusions.
Other applications of effective order will be briefly surveyed.
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Numerical solution of Hamiltonian problems by G-symplectic
integrators

B. Paternoster, R. D’Ambrosio and G. De Martino

Department of Mathematics, University of Salerno, Italy

It is the purpose of this talk to analyze the employ of General Linear Methods (GLMs) for the numerical inte-
gration of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic,
Butcher recently introduced in [1] a concept of near conservation, denoted as G-symplecticity, for such methods
which, properly combined with other desirable features (such as symmetry and boundedness of parasitic compo-
nents), allows to achieve a very accurate long time conservation of the Hamiltonian. We also focus our attention
on the connections between the order of convergence of a GLM and the observable Hamiltonian deviation, by
employing the theory of B-series [3]. Moreover, we derive a semi-implicit GLM [2] which results competitive
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with respect to symplectic Runge-Kutta methods. Numerical results on a selection of Hamiltonian problems are
presented, confirming the structure-preserving capability of G-symplectic integrators.
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Session CS10 – Variational methods and structure preserving
schemes

Preserving Taylor’s constraint in magnetohydrodynamics

J. Niesen and P. Livermore

University of Leeds, United Kingdom

The Earth’s magnetic field is generated in the outer core, whose behaviour is described by a combination of
the Navier-Stokes equation and the Maxwell equation. A problem when solving these equation is that a certain
number, the Ekman number, is very small (around 10−15). Usually, people use big computers to solve the
equations, but even then the Ekman number in the simulations can only be taken to be 10−6. The alternative is
to take the Ekman number equal to zero. This corresponds to a singular limit, in which the equations degenerate
into a partial differential algebraic system. Taylor’s constraint is an infinite number of quadratic conserved
quantities in this limit and it is thought that this constraint causes instabilities in earlier attempt to solve the
equations. I will describe our on-going efforts to design and implement a numerical method for solving the
equations which preserves Taylor’s constraint, making it hopefully stable.

On higher order variational schemes for numerical optimal control

S. Ober-Blöbaum

University of Paderborn, Germany

Direct methods for optimal control problems rely on a discretization of the underlying dynamical system. The
method DMOC [2] is based on variational integrators [1] such that geometric properties of the system are preserved
in the discrete solution. To ensure moderate computational costs, typically first or second order integrators are
used. However, many applications demand more accurate discretization schemes.
We derive and analyze higher order variational schemes for the structure-preserving simulation of mechanical
systems. This leads to a higher accuracy of the discrete solution and less computational cost, while geometric
properties are still preserved. The order of accuracy and stability properties of the integrators are analytically
and numerically determined [3]. Furthermore, we investigate the approximation order of the discrete adjoint
equations resulting from the necessary optimality conditions of the discretized optimal control problem.
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Effective approximation for the linear time-dependent Schrödinger
equation

P. Singha, Ph. Baderb, A. Iserlesa and K. Kropielnickac

a University of Cambridge, United Kingdom
b Universitat Politècnica de València, Spain
c University of Cambridge and University of Gdańsk

The computation of the linear Schrödinger equation presents major challenges because of the presence of a small
parameter. Assuming periodic boundary conditions, the standard approach consists of semi-discretisation with a
spectral method, followed by an exponential splitting. We follow an alternative strategy: our analysis commences
from the investigation of the free Lie algebra generated by the operations of differentiation and multiplication
with the interaction potential. It turns out that this algebra possesses structure that renders it amenable to a
very effective form of asymptotic splitting: exponential splitting where consecutive terms are scaled by increasing
powers of the small parameter. The number of terms of the splitting increases linearly with time accuracy. This
leads to methods that attain high spatial and temporal accuracy and whose cost scales like O(N logN), where
N is the number of degrees of freedom.

Lagrangian approach of the discrete gradient method based on
finite element methods

T. Yaguchi

Kobe University, Japan

In this talk, we propose a finite element framework of the Lagrangian approach of the discrete gradient method
to deriving energy-preserving schemes for the Euler–Lagrange partial differential equations.
Recently a framework that derives energy-preserving finite difference schemes for the Euler–Lagrange PDEs is
proposed [1]. This approach is based on a combination of the symmetry of time translation of discrete Lagrangians
and the discrete gradient method.
In this talk, we show that the same combination is also workable on the finite element framework. Because
our method is based on Lagrangian mechanics, this method can be said to be a Lagrangian counterpart of the
energy-preserving method for Hamiltonian systems by Matsuo [2]. Some applications will be also provided.
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Session CS11 – Software issues

Numerical Treatment of Two-Point Boundary Value Problems of
Fractional Differential Equations

B. Attili

University of Sharjah, United Arab Emirates

We consider the numerical treatment of two-point boundary value problems of fractional differential equations
with Caputo’s derivatives of order γ where 1 < γ < 2. We introduce the fractional Green functions in order
to prove the existence and uniqueness of the solutions to the problem. Numerically, we introduce the simple
shooting method for linear and nonlinear problems. The results obtained are accurate and competes well with
results by other authors using different approaches.

C++ Template Programs for ODE and DAE by Taylor Series

H. Hirayama

Kanagawa Institute of Technology, Japan

The arithmetic operations and functions of Taylor series can be defined by C++ language easily. It is shown
that Taylor series solutions of the following ordinary differential equations and differential algebraic equations

F(y,y′, x) = 0 with initial conditions y(0) = y0

can be computed by similar methods as above Taylor series methods. The solutions can be expanded up to
arbitrary order, so they can be used instead of higher order Runge-Kutta formula. Taylor series can be used for
the evaluations of the errors and the optimal step size within given error allowance easily. We can also transform
Taylor series into Padé series, which give A-stable methods for solving differential algebraic equations numerically.
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On Numerical Properties of Accelerated Multiple Precision Fully
Implicit Runge-Kutta Methods

T. Kouya

Shizuoka Institute of Science and Technology, Japan

We have implemented a multiple precision ODE solver based on high-order fully implicit Runge-Kutta (IRK)
methods. This ODE solver uses any order Gauss type formulas, and can be accelerated by using (1) MPFR
[1] as multiple precision floating-point arithmetic library, (2) real tridiagonalization supported in SPARK3 [2],
of linear equations to be solved in simplified Newton method as inner iteration, (3) mixed precision iterative
refinement method [3], (4) parallelization with OpenMP, and (5) embedded formulas for IRK methods [4]. In
this talk, we describe the reason why we adopt such accelerations, and show the efficiency of the ODE solver
through numerical experiments such as 1D Kuramoto-Sivashinsky equation.
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Overdetermined Regularization of Modelica based Model Equations
for Dynamical Systems and its Efficient Numerical Simulation

A. Steinbrecher

Technische Universität Berlin, Germany

The modeling of dynamical systems often leads to higher index differential-algebraic equations (DAE)

E(x, t)ẋ = f(x, t)

containing hidden constraints leading to several problems in its direct numerical integration. Therefore, a regular-
ization reducing the index but, in particular, preserving the set of solutions is necessary. Classical regularization
approaches often are very technical or lead to DAEs which are enlarged in size or still not suitable for numerical
integration due to drift.
We discuss an efficient and robust numerical simulation of dynamical systems modeled using the language Mod-
elica. We present an approach combining 1st a derivative array based regularization to obtain an equivalent
overdetermined DAE with the same set of solutions and containing no hidden constraints with 2nd the subse-
quent numerical integration of this overdetermined DAE using adapted methods. Within the Modelica framework,
currently there exist no integrator suited for overdetermined systems.
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Session CS12 – Spatial discretization of partial differential
equations

Stability of finite difference schemes for complex reaction-diffusion
processes

A. Araújoa, S. Barbeiroa and P. Serranhob

a CMUC, Department of Mathematics, University of Coimbra, Portugal
b Mathematics Section, Department of Science and Technology, Open University, Portugal

Complex diffusion is a commonly used denoising procedure in image processing [3]. In particular, nonlinear
complex diffusion proved to be a numerically well conditioned technique that have been successfully applied in
medical imaging despeckling [2]. The stability properties of a class of finite difference schemes for the nonlinear
complex diffusion equation, where both explicit and implicit schemes were considered, was studied in [1]. In
the present talk we extend those results for nonlinear complex reaction-diffusion equations discretized with both
implicit and semi-implicit finite differences schemes. Some numerical results for despeckling optical coherence
tomograms from the human retina, obtained in the context of a collaboration with the Institute of Biomedical
Research in Light and Image (IBILI), a research institution of the Faculty of Medicine of the University of
Coimbra, are also presented.

References

[1] A. Araújo, S. Barbeiro and P. Serranho. Stability of finite difference schemes for complex diffusion processes,
SIAM J. Numer. Anal., 50 (3) (2012) 1284–1296.

[2] R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro and J. Cunha-Vaz. Improved adaptive complex
diffusion despeckling filter, Optics Express, 18 (23) (2010) 24048–24059.

[3] G. Gilboa, N. Sochen and Y. Zeevi. Image enhancement and denoising by complex diffusion processes, IEEE
Trans Pattern Anal Mach Intell, 26 (8) (2004) 1020–1036.

157



Alignment of optimally transported meshes

Ch. Budda and E. Walshb

a University of Bath, United Kingdom
b Simon Fraser University, Canada

Solutions of partial differential equations are often highly anisotropic and have strongly directional features.
Examples include PDES which have shocks and interfaces in the solution. When calculating the solutions to
these PDEs it is important to use computational meshes which align themselves with features in the solution.
In this talk I will describe a mesh redistribution algorithm based on optimal transport methods which is cheap
and robust to implement. I will show further (including giving a set of rigorous results) that this method is very
effective at aligning elements along solution features including linear shocks and radially symmetric structures.
This allows the solutions to be very well approximated and I will give results to prove this.

Two new schemes for the Degasperis-Procesi equation

W. Caia and Y. Sunb

a School of Mathematical Sciences, Nanjing Normal University, China
b Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

Two new numerical schemes are proposed to solve the Degasperis-Procesi equation. One is a symplectic integrator
which preserves invariants very well. The other is constructed by the splitting method which can handle with the
shockpeakon cases while the first one cannot. Fifth-order WENO scheme and multisymplectic pseudospectral
method are involved in the construction of the splitting method. It also shows nice properties in invariant
preservation. Various numerical tests are presented to show the advantages of these two schemes with respect to
different kind of solutions.
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Spectral Method for the Transport Equation – Fast Expansion into
a Suitable Basis

H. Dietert and A. Iserles

University of Cambridge, United Kingdom

We wish to solve equations with transport terms and Dirichlet boundary conditions by spectral methods, com-
bined with splitting in time. The condition for stability is that the differentiation matrix is skew-symmetric, but
this is unattainable by any polynomial basis. Using a stretched Fourier transformation, I derive an orthogonal
basis with a tridiagonal skew-symmetric differentiation matrix together with an algorithm for fast expansion
into this basis for analytic functions. This expansion converges geometrically fast and we only need O(n logn)
operations to compute the first n coefficients.
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Session CS13 – Stability properties of numerical methods for
ODEs

Long-term stability of multi-value methods for ordinary differential
equations

R. D’Ambrosioa and E. Hairerb

a Department of Mathematics, University of Salerno, Italy
b Section de Mathématiques, Université de Genève, Switzerland

The recent literature regarding geometric numerical integration of ordinary differential equations has given special
emphasis to the employ of multi-value methods: in particular, some authors have addressed their efforts to the
construction of general linear methods with the aim of achieving an excellent long-time behavior for the integration
of Hamiltonian systems. In this talk, a backward error analysis is presented, which permits to get sharp estimates
for the parasitic solution components and for the error in the Hamiltonian. For carefully constructed methods
(symmetric and zero growth parameters) the error in the parasitic components typically grows like hp+4 exp(h2Lt),
where p is the order of the method, and L depends on the problem and on the coefficients of the method. This
is confirmed by numerical experiments.
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Nonlinear stability of generalized additive and partitioned implicit
multirate Runge-Kutta schemes

M. Guenthera and A. Sandub

a Bergische Universitaet Wuppertal, Germany
b Virginia Tech, United States

Multirate schemes are an efficient tool to exploit different time scales in ordinary differential, differential-algebraic
and partial differential equations by asigning appropriate step sizes to different components of the solution or
the right-hand side.
In this presentation we will generalize the class of additive and partitioned Runge-Kutta schemes [4] to derive
multirate schemes that are characterized by excellent nonlinear stability properties. The derivation of order
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conditions will be based on a combination of N-trees and P series. The class of generalized Runge-Kutta,
Rosenbrock-Wanner and W methods [3, 2, 1] can be embedded into this new approach. The properties of this
new class of multirate schemes will be validated by various numerical results.
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Strong stability properties for some classes of nonlinear problems

I. Higueras

Universidad Pública de Navarra, Spain

Spacial discretization of some partial differential problems (PDEs) give rise to ordinary differential equations
(ODEs). Sometimes, the solutions to these PDEs have qualitative properties, e.g., monotonicity, positivity, etc.,
which are relevant in the context of the problem. In these cases, it is convenient to preserve these properties
both in the spatial discretization of the PDE and in the time stepping process of the resulting ODE.
A common class of methods widely used in the literature are Runge-Kutta methods. For these schemes, some of
these qualitative properties can be ensured under certain stepsize restrictions given in terms of the Kraaijevanger’s
coefficient. However, for some problems, several schemes with trivial Kraaijevanger’s coefficient also provide good
numerical solutions.
In this talk we will explain how, under additional conditions on the problem, some qualitative properties can be
obtained for some methods with trivial Kraaijevanger’s coefficient.
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Rational functions with maximal radius of absolute monotonicity

L. Lóczi and D.I. Ketcheson

King Abdullah University of Science and Technology - KAUST, Saudi Arabia

We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree
s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage,
order p Runge–Kutta methods for initial value problems, and the radius of absolute monotonicity governs the
numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function
with p = 2 and R > 2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the
maximum attainable radius for functions in several one-parameter families of rational functions, and we prove
earlier conjectured optimal radii in some families with 2 or 3 parameters. Our results also prove the optimality of
some strong stability preserving implicit and singly diagonally implicit Runge–Kutta methods. Whereas previous
results in this area were primarily numerical, we give all constants as exact algebraic numbers.
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Session CS14 – Boundary value problems

The numerical solution of a BVP which rises in the prediction of
meteorological parameters.

I. Famelisa, G. Galanisb and D. Triandafyllouc

a TEI of Athens, Greece
b Atmospheric Modeling and Weather Forecasting Group, Dep. of Physics, Un. of Athens, Greece
c Section of Mathematics, Hellenic Naval Academy, Greece

Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold
is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve,
where the probability distribution functions in the case of our meteorological data are two-parameter Weibull
distributions, satisfies a 2nd order quadratic BVP system.
This system can be solved by finite differences employing Newton’s method or quasi-Newton methods for the
resulting nonlinear system and taking into consideration the special form of the Jacobian matrix. Another
approach is to use MIRK formulas to get a solution of the problem. As the problem is quadratic MIRK schemes
constructed for such problems can be considered.
This research has been co-funded by the European Union and Greek nat. resources under the framework of
the ”Archimedes III: Funding of Research Groups in TEI of Athens” project of the ”Education and Lifelong
Learning” Op. Progr.
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Approximate solutions of fractional differential equations with Riesz
fractional derivatives in a finite domain

Y. Takeuchi and R. Suda

Department of Computer Science, The University of Tokyo, Japan

This paper states approximate solutions of fractional differential equations with Riesz fractional derivatives
(FDE-RFD) in a finite domain. FDE-RFD are used in many fields, especially in the prediction of the diffusion
of radioactive materials [1]. FDE-RFD in an infinite domain have already solved by using fractional Fourier
transform [2]. In contrast, we consider how to solve FDE-RFD in a finite domain.
In this paper, we assume FDE-RFD in a finite domain can be solved by the method of separation of variables
and the analytical solution is constructed by polynomials. As a result, we find the analytical solution can be
obtained by solving a linear equation with infinite size, and we get approximate solutions from solving a linear
equation which is approximated to finite size. Note that approximate solutions in this paper mean the solutions
which are closely related to asymptotic expansions.
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Numerical Solution of Sturm–Liouville Problems via Fer Streamers

A.G.C.P. Ramos and A. Iserles

Cambridge Centre for Analysis, University of Cambridge, United Kingdom

We address the numerical challenge of solving Sturm–Liouville problems in Liouville’s normal form with certain
boundary conditions. The novelty of our approach, which is based on a non-standard truncation of Fer expansions,
which we call Fer streamers, lies in the construction of a numerical method, which does not impose any restriction
on the step size, regardless of the size of the eigenvalue. This unique feature paves the way to the initial
development of an effective numerical method to compute any eigenvalue, in clear contrast with the state of the
art, where it is not feasible to compute large eigenvalues due to restrictions on the step size. Moreover, our
theory holds whenever the potential is piecewise analytic and, in each piece, its average is upper bounded by the
smallest eigenvalue we seek. We emphasise that our numerical method is at an early stage of development, and
comment on our investigation of efficient discretisation schemes for integrals arising in Fer streamers.
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Session CS15 – Optimal control

Self-conjugate differential and difference operators arising in the
optimal control of descriptor systems

L. Scholz and V. Mehrmann

Technische Universität Berlin, Germany

We analyze the structure of the linear differential and difference operators associated with the necessary optimality
conditions of optimal control problems for descriptor systems in continuous- and discrete-time. It has been shown
in [2] that in continuous-time the associated optimality system is a self-conjugate operator associated with a self-
adjoint pair of coefficient matrices. We show that the necessary optimality conditions for discrete-time linear
quadratic control problems with variable coefficients leads to self-conjugate difference operators associated with
self-adjoint triples of coefficient functions, thus achieving a similar result as in the continuous time case. We
also extend the results to higher order differential or difference equation constraints and shown how first order
reductions can be carried out that lead to first order systems with the same structural properties.
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One Approach to Numerical Solution of a Finite-Horizon
Linear-Quadratic Optimal Control Problem for Time Delay Systems

V. Glizer and V. Turetsky

Ort Braude College, Israel

The well known approach to solution of a finite-horizon Linear-Quadratic Control Problem (LQCP) with state
delays in dynamics reduces this problem to a set of three Riccati-type matrix functional-differential equations:
one ordinary and two partial first-order with two and three independent variables [1]. This set does not allow,
in general, an exact solution. Several approaches to approximate solution of the LQCP with state delays are
known: 1) an approximation of the original problem [1]; 2) an asymptotic solution [3, 4]; 3) a finite-difference
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approximation of the set of Riccati-type equations [2]. In [4], an eliminating the unknown matrix with three
arguments from the set of Riccati-type equations, following by a finite-difference approximation of the reduced
set, is suggested for a simple example. In this talk, we extend this approach to a much more general case. This
approach reduces considerably a computer memory and a computing time, which is illustrated by examples.
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Numerical Solution of Large-Scale Differential Riccati Equations

H. Mena

University of Innsbruck, Austria

The numerical treatment of linear quadratic regulator/gaussian design problems for parabolic partial differential
equations requires solving large-scale Riccati equations. In the finite time horizon case, the differential Riccati
equation (DRE) arises. Typically, the coefficient matrices of the resulting DRE have a given structure [1] (e.g.
sparse, symmetric or low rank). Methods based on a low-rank approximation of the solution and a matrix-valued
implementation of the usual ODE methods exploit efficiently this structure [2]. Here, we discuss several variants
of the available methods, which allow to have a fast computation. In particular, we discussed the Rosenbrock type
methods, BDF methods and different ways for solving the resulting algebraic Riccati equation. The performance
of each of these methods is tested in numerical experiments.
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Session CS16 – Inverse problems and Kalman filtering

Adaptive ODE Solvers in the Continuous-Discrete Extended
Kalman Filtering Method I: Numerical Tests and Comparison

G. Kulikov and M. Kulikova

Instituto Superior Técnico, TU Lisbon, Portugal

This paper elaborates a new approach to nonlinear filtering based on an accurate implementation of the continuous-
discrete extended Kalman filter (CD-EKF). It means that the arising moment differential equations for calculating
the predicted state mean of the stochastic dynamic system and the corresponding error covariance matrix are
solved accurately, i.e. with negligible error. The latter is achieved by using ODE solvers with global error control
and allows the total error of the CD-EKF to be reduced, significantly. The new numerical scheme also retains
the symmetry and the semi-positivity of the error covariance matrix, that is important for proper work of the
CD-EKF. Eventually, our method results in a new Accurate Continuous-Discrete Extended Kalman Filter. The
designed technique is compared numerically with other known implementations of the CD-EKF to confirm its
outstanding performance on test problems.

Adaptive ODE Solvers in the Continuous-Discrete Extended
Kalman Filtering Method II: Square-Root Implementation and

Application to Target Tracking

M. Kulikova and G. Kulikov

Instituto Superior Técnico, TU Lisbon, Portugal

The new Accurate Continuous-Discrete Extended Kalman Filter based on the combined use of the embedded
Runge-Kutta pair NIRK4(2) with the global error control from [1] and Mazzoni’s scheme [2] is discussed in
detail, here. First, its square-root variant is designed to improve accuracy and robustness for a finite-precision
computer arithmetics. Then, it is examined in severe conditions of tackling a seven-dimensional radar tracking
problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for
testing nonlinear filtering algorithms. Our numerical results confirm that the presented technique is flexible and
robust. It treats successfully (and without any additional tuning) the target tracking problem for various initial
data and for a range of sampling times.
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Detection of weak inclusions in poroelastic soils using Small
Amplitude Homogenization

J. Mura

Civil Engineering School, Pontificia Universidad Catolica de Valparaiso, Chile

This contribution is devoted to the determination of subsurface images for the identification of aquifers, oil and
gas reservoirs, which are very important for applications in hydrology, groundwater quality assessment, among
many others. To this end, we consider the Biot’s model for fully saturated poroelastic soils in time harmonic
regime, where it is applied some recent developments for inverse problems as the small amplitude homogenization
method. This conceives the construction of a minimizing sequence by assuming that the contrast between the
two possible values for the parameters are not very large. Hence, it is performed an asymptotic approximation
up to second order with respect to the contrast parameter, which lead us to a new set of simplified equations to
solve. In particular, this evaluation involves the computation of the H-measure associated to the Biot’s model.
Finally, some numerical results will be shown to demonstrate the performance and reliability of this method.

Wavefield simulation and velocity inversion based on the acoustic
wave equation

W. Zhang and J. Luo

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

In geophysical exploration the mathematical model based on the acoustic wave equation is usually adopted.
Modelling the wave propagation underground and inversing the media velocity are very helpful in geophysical
data processing. Here, we investigate numerical inversion methods for velocity based on the acoustic waveform.
Waveform inversion is in fact an optimization problem which minimizes the residuals between the recorded data
and the synthesized data. As the data are observed on the partial boundary this problem is the highly ill-posed
problem. We use the least-square method to solve the problem. Various iterative methods such as the Gauss-
Newton method and the Levenberg-Marquardt method may be used. The performance of the different iterative
methods is compared. Considering the computational efficiency the second-order finite-difference method are
used to simulate the wavefield. The absorbing boundary conditions in simulation are the Clayton-Engquist
conditions.
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Session CS17 – Implicit-explicit methods for ODEs

Nordsieck methods with inherent quadratic stability

M. Bras

AGH University of Science and Technology, Poland

We will discuss general linear methods (GLMs) for the numerical solution of systems of ordinary differential
equations. They are characterized by four integers (p, q, r, s), where p is the order of the method, q is the stage
order of the method, s is the number of internal stages and r is the number of external approximations.
In order to simplify the analysis of this class, we introduce the inherent quadratic stability property (IQS), i.e.,
the conditions on method’s coefficients that guarantee that the stability function assumes quadratic form

p(w, z) = wr−1(w2 − p1(z)w + p0(z)),

where p1(z) and p0(z) are rational function of z. Then the stability properties are determined by the quadratic
part of the stability polynomial.
We assume, that the vector of external stages approximates the Nordsieck vector. After applying order, stage
order and IQS conditions we search for methods with desired stability properties.
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Multivalue methods for non-separable Hamiltonian systems

A. Hill and T. Norton

University of Bath, United Kingdom

This talk considers the properties of a new class of multivalue methods designed to integrate non-separable
Hamiltonian problems. Computational comparisons are made with Gauss and DIRK methods.
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Efficient Implicit-Explicit Runge-Kutta methods with low storage
requirements

T. Roldan and I. Higueras

Universidad Publica de Navarra, Spain

Space discretization of some time-dependent PDEs gives rise to systems of ordinary differential equations in
additive form

y′ = f(y) + g(y) , y(t0) = y0 , (4)
where f, g : Rk → Rk are sufficiently smooth functions with different stiffness properties. For these problems,
implicit methods should be used to treat the stiff terms while efficient explicit methods can still be used for the
nonstiff part of the equation.
We consider different implicit-explicit Runge-Kutta methods for additive differential equations of the form (4).
In the construction of Runge-Kutta methods, stability and accuracy properties should be taken into account.
However, in some contexts, storage requirements of the schemes play an important role.
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A class of implicit-explicit general linear methods

A. Sandu and H. Zhang

Virginia Tech, United States

Implicit-explicit (IMEX) time stepping methods can efficiently solve differential equations with both stiff and
nonstiff components. IMEX Runge-Kutta methods and IMEX linear multistep methods have been studied in
the literature. In this talk we discuss new implicit-explicit methods of general linear type (IMEX-GLMs). We
develop an order conditions theory for high stage order partitioned GLMs that share the same abscissae, and
show that no additional coupling order conditions are needed. Consequently, GLMs offer an excellent framework
for the construction of multi-method integration algorithms. Next, we propose a family of IMEX schemes based
on diagonally-implicit multi-stage integration methods and construct practical schemes of order three. Numerical
results confirm the theoretical findings.
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Session CS18 – Dynamical systems

Exponentially long transient oscillations in a class of cooperative
cellular networks

B.M. Garaya, M. Fortib, M. Kollera and L. Pancionib

a Pázmány Péter Catholic University, Budapest, Hungary
b University of Siena, Italy

The real-time processing capabilities of CNNs are inherently related to the fast convergence time of the solutions
toward the asymptotically stable equilibria. A typical requirement is that the settling time should not exceed a
few (or at most ten) cell time constants. We report on a class of completely stable nonsymmetric cooperative
CNN rings whose solutions display unexpectedly long transient oscillations for a wide set of initial conditions
and interconnection parameters. Numerical simulations show that the oscillations can easily last hundreds of
cycles, and thousands of cell time constants, before settling to a steady state, thus possibly impairing their
real-time processing capabilities. Laboratory experiments on a discrete-component prototype of the CNN ring
shows that the long oscillation phenomenon is physically robust with respect to the non-idealities of the circuit
implementation. Finally, asymptotic estimates on the duration of the transients are given.

Modified Trigonometric Integrators

R. McLachlana and A. Sternb

a Massey University, New Zealand
b Washington University, United States

We study modified trigonometric integrators, which generalize the popular class of trigonometric integrators for
highly oscillatory Hamiltonian systems by allowing the fast frequencies to be modified. Among all methods of
this class, we show that the IMEX (implicit-explicit) method, which is equivalent to applying the midpoint rule
to the fast, linear part of the system and the leapfrog (Störmer/Verlet) method to the slow, nonlinear part,
is distinguished by the following properties: (i) it is symplectic; (ii) it is free of artificial resonances; (iii) it is
the unique method that correctly captures slow energy exchange to leading order; (iv) it conserves the total
energy and a modified oscillatory energy up to second order; (v) it is uniformly second-order accurate in the
slow components; and (vi) it has the correct magnitude of deviations of the fast oscillatory energy, which is
an adiabatic invariant. These theoretical results are supported by numerical experiments on the Fermi-Pasta-
Ulam problem and indicate that the IMEX method, for these six properties, dominates the class of modified
trigonometric integrators.
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Multiple convective flows in porous annular domains

V. Tsybulina and B. Karasozenb

a Southern Federal University, Rostov-on-Don, Russian Federation
b Middle East Technical University, Ankara, Turkey

Coexistence of multiple patterns in Lapwood convection (D. Lyubimov) was explained by cosymmetry theory
(V. Yudovich). Study of the flows and its bifurcations for this problem requires special numerical methods to
preserve cosymmetry in the discrete approximation of underlying system of partial differential equations. We
analyze the family of steady convective fluid patterns in annular enclosure filled with a porous medium by the
finite-difference method [1]. Results of computation of the families of steady states for two annular domains are
given. Non-uniform stability spectra is found for convective patterns belonging to the family of steady states.
The continuation of the family up to the appearance of unstable states is done and the scenario with simultaneous
instability at three points is detected. So, this bifurcation is being a cosymmetrical effect not a symmetrical one.
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Symplectic simulation of guiding-center motion

R. Zhanga, Y. Tanga and H. Qinb

a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
b Plasma Physics Laboratory, Princeton University, United States

The guiding center motion of charged particles is the physical process that underlies the collective dynamics of
magnetized plasmas. In numerical simulation for the guiding-center equation which is a Hamiltonian system
with non-canonical symplectic structure, we transform it into canonical Hamiltonian system and use symplectic
scheme. Compared with standard integrators, such as the fourth order Runge-Kutta method, the symplectic
scheme has superior numerical properties over long integration time. This is important for modern large-scale
simulation studies of fusion plasmas where it is critical to use algorithms with long-term accuracy and fidelity.
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