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In order to study a generalization of the explicit p-stage Runge-Kutta
methods, we introduce a new family of p-stage formulas for the numerical
integration of some special systems of ODEs that provides better order
and stability results with the same number of stages. In our recent paper
entitled ’An improved class of generalized Runge-Kutta methods for stiff
problems. Part I: The scalar case’ we studied new schemes for the numer-
ical integration of scalar autonomous ODEs. In this second part we will
show that it is possible to generalize our GRK-methods so that they can
be applied to some non-autonomous scalar ODEs and systems obtaining
linearly implicit A-stable and L-stable methods. These methods do not
require Jacobian evaluations in their implementation. Some numerical ex-
amples are discussed in order to show the good performance of the new
schemes.
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1 Introduction.

In our recent paper [7], first part of this work, we introduced the general form
of a new class of explicit p-stage methods for the numerical integration of
scalar autonomous ODEs. In the same paper, but also in [4,2,5], examples are
shown of explicit two-stage methods of order three for the numerical integra-
tion of scalar autonomous ODEs, some of them being A-stable and L-stable.
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Programa C.I.C.Y.T under proyect BFM2002-03815.
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Comparisons with Runge-Kutta methods as well as numerical experiments are
also reported.

For brevity reasons, we refer to these methods as GRK-methods (Generalized
Runge-Kutta methods). In what follows, we make this name also extensive to
the methods for systems that we will study here.

Recently, in the Thesis of J. Álvarez [3] the GRK-methods (and the extension
of these methods to ’separated’ systems) have been introduced and studied
in a systematic way, but the language used in this work is spanish, and so, it
seems necessary to make the ideas of the Thesis available in an international
journal. This is the main purpose of this paper.

We will study how the GRK-methods for scalar problems can be extended
(with minor changes) in order to integrate more general problems. We will
show that it is possible to obtain A-stable linearly implicit formulas for some
non-autonomous scalar ODEs and systems. In [6] we presented a first two-
stage third order method for separated systems of ODEs being L-stable, as
well as preliminary results using our method to integrate systems that arise
when solving some nonlinear parabolic PDEs by the method of lines approach.

Following this line, our aim is now to generalize this method by introducing
the family of GRK-methods in order to obtain some properties that cannot be
obtained from the classical explicit Runge-Kutta formulas. In fact, as we have
seen when considering the scalar version of the GRK-methods (see [7]) the
most important advantage of our methods is that we can obtain higher order
with a reduced number of function evaluations. We will obtain linearly implicit
methods of high order with important linear stability properties that cannot
be obtained with the classical explicit Runge-Kutta methods. For example, it
is possible to obtain order three and L-stability with only two stages (that is
two function evaluations per integration step). This justifies the consideration
of the formulas we will present here.

Our methods show also important advantages with respect to other classical
implicit [9] and diagonally implicit [1] Runge-Kutta methods, and Rosenbrock
type methods such as the ROW-methods (also called Rosenbrock-Wanner
methods and modified Rosenbrock methods) [14,15,17] for which the exact
Jacobian matrix must be evaluated at each step, because for our formulas the
exact Jacobian matrix must not be computed when the methods are imple-
mented.

Note at this point that, as we have remarked in [2], it is also possible to
obtain two-stage third order formulas (belonging to the family of methods we
will introduce) from any prefixed linear stability function. This can be of great
interest when considering perturbed problems for which the exact solution of
the unperturbed problem is known, because we can obtain methods specifically

2



designed to integrate exactly the unperturbed problem.

As is well known, non autonomous systems can be easily formulated as au-
tonomous systems, and so our treatment will consider only the autonomous
case.

In the system case, that we are going to study here, we have that term s
considered in [7] for the scalar case cannot be defined exactly in the same
way because now the stages k1 and k2 are vectors. So, when considering this
problem, we will see that the formula in [7] that gives us term s, must be
modified into a formula that gives us term s as a square matrix with the same
dimension of the system. Division by the vector k1 has only sense when the
vectorial function f defining the system

y′ = f(y) (1)

is of a special type that we will call ’separated’ (and so the associated system
is a ’separated system’). For this, as we will see later, function f must be
given in the form (2). The special form of function f makes no available
the GRK-methods for general systems. This limitation of the new methods
is compensated by the important advantages of our methods (higher order,
better linear stability properties, ...) when applied to the class of separated
problems, with respect to classical methods such as Runge-Kutta formulas.

We have explored some important problems of practical interest for which our
methods can be applied. As a result of this study, we have concluded that
many important problems of interest that are formulated in terms of ODEs or
PDEs can be solved with the formulas we will propose here. We also note that
some non autonomous equations can be formulated in terms of an autonomous
separated system and integrated with our methods.

When considering many important partial differential equations, and after a
semi discretization (by using finite difference approximations) that transform
these problems into a system of ordinary differential equations, we obtain
separated systems for which our methods can be applied. For example, systems
of this type appear when solving some parabolic partial differential equations
by the method of lines. We will show examples of this later, by obtaining
separated systems of ODEs from the Burgers’ equation by the method of lines
approach (with finite difference approximations in the spatial derivatives).
In (20) we will show examples of this, and more precisely, we will consider as
in [6] the problem studied in [11] (pp. 349–443) involving Burgers’ equation.

When we observe the cases cited as practical in the literature we see that
many of them are problems that we can solve with our methods. We can cite
for example (26) (see [20] pp. 27 and [18]) and (28) (taken from [16], pp. 213)
as interesting examples of this.
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Following these ideas for scalar equations, we have adapted our methods in
order to obtain formulas that can be applied to many second order differ-
ential equations of an special type. In [8] some preliminary results involving
perturbed oscillators can be found.

As a resume, we will show clearly that the new methods can be applied to a
wide class of problems considered of interest in the current literature. Also,
for these problems for which the explicit (or linearly implicit) methods can
be applied, we get very high orders of convergence and specially good linear
stability properties for stiff problems that completely justifies the introduction
of the new schemes and its study.

Now we can begin the description of the new formulas for separated systems.

2 The problem.

We will begin considering separated systems given by

y′(1) = f11(y(1)) + f12(y(2)) + . . . + f1m(y(m)) ,

y′(2) = f21(y(1)) + f22(y(2)) + . . . + f2m(y(m)) ,

...
...

y′(m) = fm1(y(1)) + fm2(y(2)) + . . . + fmm(y(m)) , (2)

that is, autonomous systems of ODEs y′ = f(y) =
∑m

j=1 Fj(y(j)) for which
f : IRm → IRm is given by f(y) = F (y)1l, with y = (y(1), y(2), . . . , y(m)),
1l = (1, 1, . . . , 1)T and where F is the matrix

F (y) =




f11(y(1)) f12(y(2)) · · · f1m(y(m))

f21(y(1)) f22(y(2)) · · · f2m(y(m))
...

...
...

fm1(y(1)) fm2(y(2)) · · · fmm(y(m))




, (3)

whose j-th column is given by Fj and with components fij : IR → IR. Note
that brackets are used for the components of vectors y and y′. These systems
are thus given componentwise by

y′(i) = fi(y(1), y(2), . . . , y(m)) =
m∑

j=1

fij(y(j)) , 1 ≤ i ≤ m. (4)

Although the preceding expressions for the separated systems are not com-
pletely determined in an unique way because the additive constants can be
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assimilated to the components in many different ways, the methods we will
introduce later give the same result independently of where we place these
additive constants.

Note that we begin considering only (separated) autonomous systems of ODEs,
but, as we will see later, some non autonomous systems that take the form
y′(x) = f(y(x)) + g(x) can be also integrated with the schemes we will in-
troduce in this work. This can be easily seen by adding the trivial equation
x′ = 1 to the preceding non autonomous systems so that the resulting system
takes an autonomous form. This resulting autonomous system is one dimen-
sion higher, and separated when y′(x) = f(y(x)) is separated. Our methods
can be implemented for these non autonomous problems without increasing
this dimension.

3 The new family of GRK-methods.

For problem (2), with initial condition y(x0) = y0 (y0 ∈ IRm), the general form
of a p-stage method of our family is given by

yn+1 = yn + hGp+1(S2, S3, . . . , Sp) k1 , (5)

in terms of the stages

k1 = f(yn)

k2 = f(yn + hG2 k1)

k3 = f(yn + hG3(S2) k1) (6)
...

kp = f(yn + hGp(S2, S3, . . . , Sp−1) k1) ,

where yn, yn+1 and the ki are m dimensional (column) vectors in IRm and
where Si and Gi(S2, S3, . . . , Si−1) are square matrices, that is Si ∈ MIR(m)
and Gi(S2, S3, . . . , Si−1) ∈ MIR(m) (MIR(m) is the space of m row square
matrices with real elements). The matrices Si take the form




f11(yn(1) + α1)− f11(yn(1))

e1 Gi(S2, S3, . . . , Si−1) k1

· · · f1m(yn(m) + αm)− f1m(yn(m))

em Gi(S2, S3, . . . , Si−1) k1
...

...

fm1(yn(1) + α1)− fm1(yn(1))

e1 Gi(S2, S3, . . . , Si−1) k1

· · · fmm(yn(m) + αm)− fmm(yn(m))

em Gi(S2, S3, . . . , Si−1) k1




, (7)

where αj = h ej Gi(S2, S3, . . . , Si−1) k1 (with 1 ≤ j ≤ m) and ej is the m
dimensional row vector in IRm whose components are all zero except for the
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j-th component that takes the value 1. Note that the element in row p and
column q (with 1 ≤ p, q ≤ m) of the preceding matrix Si is

fpq(yn(q) + h eq Gi(S2, S3, . . . , Si−1) k1)− fpq(yn(q))

eq Gi(S2, S3, . . . , Si−1) k1

. (8)

Stages ki (1 ≤ i ≤ p) can be also given in terms of function F (see (3)) through
relation

ki = F (yn + hGi(S2, S3, . . . , Si−1) k1)1l

=
m∑

j=1

Fj(yn(j) + h ej Gi(S2, S3, . . . , Si−1) k1) , (9)

where Fj(yn(j) + h ej Gi(S2, S3, . . . , Si−1) k1) is the j-th column of the square
matrix F (yn + hGi(S2, S3, . . . , Si−1) k1) given by




f11(yn(1) + h e1 Gi(∗) k1) · · · f1m(yn(m) + h em Gi(∗) k1)
...

...

fm1(yn(1) + h e1 Gi(∗) k1) · · · fmm(yn(m) + h em Gi(∗) k1)




, (10)

with (∗) denoting point (S2, S3, . . . , Sp−1), and the element in row p and col-
umn q (with 1 ≤ p, q ≤ m) of this matrix given by

fpq(yn(q) + h eq Gi(S2, S3, . . . , Si−1) k1) . (11)

Now it is easily seen that the j-th column of matrices Si in (7) takes the form

Fj(yn(j) + h ej Gi(S2, S3, . . . , Si−1) k1)− Fj(yn(j))

ej Gi(S2, S3, . . . , Si−1) k1

, (12)

and is therefore given in terms of the j-th column of stage ki (see (9)) minus
the j-th column of stage k1 and divided by the term ej Gi(S2, S3, . . . , Si−1) k1

taken from the argument of the j-th column of stage ki.

From the preceding comments it is now clear that matrices Si can be seen as a
generalization (together with a minor modification) of the terms si considered
in the scalar case. In fact, it is not difficult to see that the family of methods
introduced in [7] for scalar problems can also be formulated in this manner,
but we will not do that here.

Note that matrices Si for this kind of systems can be seen as approximations to
hfy(yn), that is, approximations to the Jacobian matrix of function f evaluated
in yn (and scaled by the step h). This follows from the fact that (8) can be
considered an approximation to the partial derivative of the p-th component
of function f with respect to his q-th variable at point yn. In fact, for this kind

6



of systems we have

∂fp

∂y(q)

(yn) =
∂fpq

∂y(q)

(yn(q)) ≈ fpq(yn(q) + h δq)− fpq(yn(q))

h δq

, (13)

with δq = eq Gi(S2, S3, . . . , Si−1) k1.

From our last observation we can conclude that our GRK-methods are sim-
ilar to the Rosenbrock methods [19] and other related formulae such as the
W-methods [22], the MROW-methods [24] and the generalized Runge-Kutta
methods [23] for which the exact Jacobian matrix must not be computed when
methods are implemented. In [11] some of this methods can be found.

The most important advantage of our GRK-methods with respect to these
methods is that for our formulas it is not necessary to make new evaluations
of function f to obtain the approximate Jacobian matrix. This is so because
matrices Si (from which we have the approximations to the Jacobian matrix)
are obtained from the information contained in the stages ki with no extra
evaluations of function f (at the only cost of working with square matrices
during the evaluations).

As we have commented before, separated systems are not completely deter-
mined because of additive constants. More precisely, taking in (2) f̃ij = fij+cij

in place of fij (1 ≤ i, j ≤ m) with cij given constants satisfying
∑m

j=1 cij = 0
for i = 1, 2, . . . , m , we get the same system. It is a simple task to show that
when we apply any of our methods to both separated systems (representing
the same system) y′ = f(y) and y′ = f̃(y), taking the same initial value and
the same stepsize, we obtain the same result.

4 A first two-stage GRK-method for separated systems.

Before studying in detail the new family of methods, we begin considering a
first example of a two-stage formula. Note that function G2 in (6) is constant,
that is, G2 = c2I where c2 is a constant and I is the identity matrix in
MIR(m). Therefore, a two-stage method for systems from the preceding family
of schemes takes the form

yn+1 = yn + hG3(S2) k1 , (14)

where the stages are

k1 = f(yn) , k2 = f(yn + hc2k1) , (15)
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and S2 is the matrix




f11(yn(1)+hc2e1k1)−f11(yn(1))

c2e1k1

· · · f1m(yn(m)+hc2emk1)−f1m(yn(m))

c2emk1
...

...

fm1(yn(1)+hc2e1k1)−fm1(yn(1))

c2e1k1

· · · fmm(yn(m)+hc2emk1)−fmm(yn(m))

c2emk1




(16)

The formula is completely determined from the values of c2 and function G3.

From Butcher’s theory we know that a Runge-Kutta method of order q for
scalar problems can show order less than q when applied to systems of ODEs.
However, for q ≤ 3 any Runge-Kutta method of order q for scalar autonomous
problems shows the same order when applied to systems of ODEs (see for
example [16] pp. 173-175 for more details). For our methods this result also
holds, that is, for q ≤ 3 any GRK-method of order q for scalar autonomous
problems shows the same order when applied to separated systems of ODEs.

As a first example we will obtain an L-stable formula. In order to attain L-
stability we must take G3 given by a rational function whose denominator must
be interpreted in terms of inverse matrices (note that the argument S2 of func-
tion G3 is a square matrix). We look for a function G3(s) whose denominator
takes the form (1−a s)α, that is, G3(S2) in (14) is given by (I−a S2)

−α N(S2)
where α ∈ IN , a ∈ IR is a constant and N is a polynomial function (as before,
I stands for the identity matrix). We take function G3 in this manner so that
only one LU factorization must be done for each integration step. Taking the
values α = 3, c2 = 2/3, a as the root of polynomial 6x3 − 18x2 + 9x − 1 = 0
given by

a = 1 +

√
6

2
sin

(
1

3
arctan

(√
2

4

))
−
√

2

2
cos

(
1

3
arctan

(√
2

4

))

≈ 0.435866521508459 , (17)

and function G3 in (14) given by

G3(S2) = (I − aS2)
−3

(
I +

1− 6a

2
S2 +

1− 9a + 18a2

6
S2

2

)
, (18)

we obtain a two-stage third order L-stable method for separated systems whose
associated stability function takes the form

R(z) =
2 + 2 (1− 3a) z + (1− 6a + 6a2) z2

2 (1− a z)3
, (19)

with a given by (17).
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For more details involving the L-stability that we get from the preceding
stability function R(z), [11] pp. 96–98 is a good reference. In [6] this method
is obtained with slightly different notations.

5 A first numerical experiment with systems.

As a first example, in order to show the good performance of the preced-
ing method, we will consider a numerical experiment involving the Burgers’
equation

ut + uux = ν uxx or equivalently ut +

(
u2

2

)

x

= ν uxx , ν > 0 , (20)

where u = u(x, t) and we take 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. Initial and Dirichlet
boundary conditions for our example are taken as

u(x, 0) = (sen(3πx))2 · (1− x)3/2 , u(0, t) = u(1, t) = 0 . (21)

The preceding nonlinear parabolic problem is taken from [11] (see pp. 349 and
443) and was originally designed by Burgers in 1948 as a mathematical model
illustrating the theory of turbulence. Nowadays it remains interesting as a
nonlinear equation resembling the Navier-Stokes equations in fluid dynamics.
Note that for small values of ν the solution possesses shock waves and for
ν → 0 we obtain discontinuous solutions. Note also that Burgers’ equation can
be considered as an example of hyperbolic problem with artificial diffusion for
small ν.

Now we will apply the method of lines to this equation as follows. We will
consider a uniform mesh along the x-axis and replace all spatial derivatives in
the right equation of (20) by centered finite difference approximations. Taking

∆x =
1

N + 1
, ui(t) = u(i∆x, t) i = 0, 1, . . . , N + 1 , (22)

we get a separated system of ODEs for this method of lines approach to
Burgers’ equation, that is given by

u′i = −u2
i+1 − u2

i−1

4∆x
+ ν

ui+1 − 2ui + ui−1

(∆x)2
, i = 1, 2, . . . , N

ui(0) = (sen(3πi∆x))2 · (1− i∆x)3/2 , i = 1, 2, . . . , N , (23)

with ui = ui(t). From the boundary conditions we get that u0(t) = uN+1(t) = 0
must hold. Obviously our method can be applied to the this separated system.
After the appropriate exclusions and substitutions we can note by inspection
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that the Jacobian matrix associated to this system is tridiagonal.

In [6] we have applied our method with fixed stepsize h = 0.04 to the preceding
system taking N = 24 and ν = 0.2 and obtaining in this way the numerical so-
lution (see the first figure in [6]). For these values the system becomes banded
of dimension 24 and the associated Jacobian matrix is tridiagonal. The prob-
lem is mildly stiff with the eigenvalues of the Jacobian belonging to interval
[−499,−1] (the dominant eigenvalue being close to −498) for the integration
interval considered.

With fixed stepsize h = 2−k for the values k = 2, 3, . . . , 10 over 2k steps, the
value of the numerical solution (for t = 1) was also computed in [6] by using
our method, and the magnitude of the error E (measured in the Euclidean
norm of the space IR24) for the different stepsizes considered can be found in
the second figure of this work. The exact solution at the specified output point
was computed very carefully taking fixed stepsize h = 0.0001. In the double
logarithmic scale used for that figure, the error is closely represented by a
straight line whose slope equals the order of the method. Figure shows clearly
the order three of our method, in complete agreement with our theoretical
result.

In the following sections we will repeat this numerical experiment with other
third and fourth order methods.

To complete this first approach to our methods for separated systems we will
also consider the following numerical experiments.

6 Some interesting numerical experiments.

We will study the family of problems taken from [13], pp. 34 (see also [21],
pp. 233 and [12]).

y′1 = −(b + an)y1 + byn
2 y1(0) = cn

y′2 = y1 − ay2 − yn
2 y2(0) = c

(24)

whose solution is given by

y1(x) = cne−anx , y2(x) = ce−ax . (25)

We take the values a = 0.1, c = 1, n = 4 and b = 100i (i = 0, 1, 2, 3) in the
interval 0 ≤ x ≤ 10. The problem is stiffer for great values of parameter b. In
fact, the eigenvalues along the exact solution satisfy λ1 ≈ −b and λ2 ≈ −a).
The nonlinear character of the problems depends on the value n (the problem
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is more nonlinear when n is great). For more details on this problem see [13].

With fixed stepsize h = 2−k for k = 0, 1, 2, . . . , 10 we integrate along 10 · 2k

steps obtaining in this way approximations to the exact solution y (for x = 10)
with our two-stage method. The magnitude of the global error E (in the
Euclidean norm) for the different stepsizes h and for each of the problems
considered is shown in Figure 1 in double logarithmic scale. It can be seen
that the method shows order less than three (in fact two) when applied to this
problem taking b = 1000000 (marked in figure with crosses) and b = 10000
(circles) for the range of stepsizes we are considering here. Taking b = 100
(diamonds) the order goes from two to three when the stepsize is reduced.
The order reduction can be explained in terms of the so called B-convergence
and many implicit methods also show this behaviour when applied to some
nonlinear stiff ODEs. Finally, taking b = 1 (squares) the problem is no longer
stiff and our method shows order three as expected.

-12

-10

-8

-6

-4

E

-3 -2 -1 0
h

Fig. 1. Error as a function of the step-
size in double logarithmic scale for our
method (autonomous problem).

PROBLEM B

PROBLEM A

-9

-7

-5

-3

-1

E

-4 -3 -2 -1 0
h

Fig. 2. Error as a function of the step-
size in double logarithmic scale for our
method (non autonomous problems).

Now we will consider two non autonomous stiff problems. Problem A is taken
from [20], pp. 27 and is given by

y′ = −106 y + cos x + 106 sin x , y(0) = 1 , (26)

with solution

y(x) = sin x + e−106 x . (27)
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Note that this problem can be considered as part of the family of scalar equa-
tions proposed by Prothero and Robinson in [18].

Problem B is given in terms of the following non autonomous system

y′1 = −2 y1 + y2 + 2 sin x y1(0) = 2

y′2 = 998 y1 − 999 y2 + 999(cos x− sin x) y2(0) = 3
(28)

taken from [16], pp. 213, for which the exact solution takes the form

y1(x) = 2e−x + sin x , y2(x) = 2e−x + cos x . (29)

Both problems are stiff (the eigenvalue for problem A is λ = −1000000 and
for problem B the eigenvalues are λ1 = −1 and λ2 = −1000). We apply our
two-stage method to both problems with fixed stepsizes h = 2−k for k =
0, 1, 2, . . . , 11 over 10 · 2k steps. Figure 2 shows the global error E (in the
Euclidean norm) as a function of the stepsize h in double logarithmic scale.
As in the previous example, we can observe that the order that shows our
method when applied to problem A is nearly two (for the range of stepsizes
considered here). Taking small enough stepsizes the order changes from two
to three as expected. For problem B the order changes from two to three when
the stepsize is reduced, as can be seen in the figure. As we have pointed before,
this can be explained in terms of the concept of B-convergence.

7 Order conditions for the two-stage methods.

As we have shown in the preceding numerical experiments, it is possible to
obtain two-stage methods of order three for separated systems. In fact, in this
case, the order conditions (for order three) are the same we obtained consider-
ing scalar autonomous problems. In the same way as when we considered the
scalar case, it suffices to obtain the order conditions for the polynomial type
methods, because from these conditions we easily obtain those of the general
formulas.

Also as in the scalar case, two-stage methods of polynomial type (for systems)
can be defined as follows

yn+1 = yn + hG3(S2) k1 , (30)

where the stages are given by

k1 = f(yn) , k2 = f(yn + hc2k1) , (31)
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S2 is the matrix




f11(yn(1)+hc2e1k1)−f11(yn(1))

c2e1k1

· · ·f1m(yn(m)+hc2emk1)−f1m(yn(m))

c2emk1
...

...

fm1(yn(1)+hc2e1k1)−fm1(yn(1))

c2e1k1

· · ·fmm(yn(m)+hc2emk1)−fmm(yn(m))

c2emk1




(32)

and where function G3 is given in terms of S2 by

G3(S2) = c3

(
I +

r3∑

i=1

aiS
i
2

)
, r3 ∈ IN , (33)

where I stands for the identity matrix of dimension m. Order conditions (for
order three) are the same as those given for scalar autonomous problems
(see [7]), that is

c3 = 1 , (34)

c3a1 = 1/2 , (35)

c3c2a1 = 1/3 , (36)

c3a2 = 1/6 . (37)

After solving this conditions for order three, we deduce that c2 = 2/3 and that
function G3 associated to any third order method of polynomial type can be
given in the form

G3(S2) = I +
1

2
S2 +

1

6
S2

2 +
r3∑

i=3

aiS
i
2 , r3 ∈ IN , (38)

where the free parameters ai (with i ≥ 3) can be arbitrarily chosen.

Additional conditions for order four are now different from those associated
to the scalar case (see again [7]). In fact, now we have four additional order
conditions (one more than in scalar case) that are given by

c3c
2
2a1 = 1/4 , (39)

c3c2a2 = 1/12 , (40)

c3c2a2 = 1/4 , (41)

c3a3 = 1/24 , (42)

and two of these conditions ((40) and (41)) cannot be satisfied at the same
time. It is easily seen that first three equations are not satisfied for the val-
ues of the parameters that we must take so that the two-stage method has
order three, and therefore it is not possible to obtain formulas of order four
with only two stages (as in scalar case). However, we can satisfy the fourth
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equation taking a3 = 1/24 in such a way that the principal part of the local
truncation error (PPLTE) is minimized. For this choice of parameter a3, and
taking also a1 = 1/2, a2 = 1/6, c2 = 2/3 and c3 = 1 (to attain order three),
the resulting formulas show order four when applied to lineal problems with
constant coefficients.

Now, order conditions for two-stage methods for separated systems given in
terms of rational type functions, are easily obtained from those obtained for
polynomial type formulas, following the same ideas as in scalar case. A two-
stage method of rational type for systems is given (generalizing the associated
methods for scalar case) by formulas (30)–(32), where function G3 in terms of
S2 takes the form

G3(S2) = c3


I +

d∗3∑

i=1

diS
i
2



−1 

I +
n∗3∑

i=1

niS
i
2


 , n∗3, d

∗
3 ∈ IN , (43)

As in the scalar case, it suffices to take G2 = c2I with c2 = 2/3 and function
G3 given by (43) with a Taylor’s expansion in powers of S2 of the form

G3(S2) = I +
1

2
S2 +

1

6
S2

2 + O(S3
2) . (44)

Therefore, it is enough to take the values n∗3 = d∗3 = 2 in (43) in order to obtain
the order conditions for order three methods of rational type from those of
polynomial type. We easily obtain in this way the fourth order conditions

c2 = 2/3 , (45)

c3 = 1 , (46)

n1 = 1/2 + d1 , (47)

n2 = 1/6 + (1/2)d1 + d2 , (48)

as in the scalar case (see [7]).

If we also want to minimize the principal part of the local truncation error,
we must take n∗3 = d∗3 = 3 in (43) and expand in (44) to one higher order
obtaining the additional condition

n3 = 1/24 + (1/6)d1 + (1/2)d2 + d3 . (49)

From the preceding considerations we deduce that the general form of a two-
stage third order method of rational type for systems is

yn+1 = yn + hG3(S2) k1 , (50)
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where stages are given by

k1 = f(yn) , k2 = f
(
yn +

2

3
hk1

)
, (51)

matrix S2 takes the form




f11

(
yn(1)+

2
3
he1k1

)
−f11(yn(1))

2
3
e1k1

· · ·
f1m

(
yn(m)+

2
3
hemk1

)
−f1m(yn(m))

2
3
emk1

...
...

fm1

(
yn(1)+

2
3
he1k1

)
−fm1(yn(1))

2
3
e1k1

· · ·
fmm

(
yn(m)+

2
3
hemk1

)
−fmm(yn(m))

2
3
emk1




(52)

and function G3 is

G3(S2) =


I + d1S2 + d2S

2
2 +

d∗3∑

i=3

diS
i
2



−1

·

I +

1 + 2d1

2
S2 +

1 + 3d1 + 6d2

6
S2

2 +
n∗3∑

i=3

niS
i
2


 . (53)

The general form of a two-stage third order method of rational type for systems
that minimizes the principal part of the local truncation error is given by
formulas (50–52), where now function G3 takes the form

G3(S2) =


I + d1S2 + d2S

2
2 + d3S

3
2 +

d∗3∑

i=4

diS
i
2



−1

·
(
I +

1 + 2d1

2
S2 +

1 + 3d1 + 6d2

6
S2

2

+
1 + 4d1 + 12d2 + 24d3

24
S3

2 +
n∗3∑

i=4

niS
i
2


 . (54)

8 Order conditions for the three-stage methods.

Now situation changes with respect to the two-stage case. First, definition of
matrix S3 that we will introduce later changes with respect to scalar case. Also,
since two matrices S2 and S3 appear now in definition, non commutativity of
products of those matrices must be taken into account. These makes the new
three-stage formulas for systems more complicated than two-stage methods
(only one matrix appears in this case).
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We begin considering the general form of the three-stage methods for separated
systems that we can obtain from Section 3 taking p = 3. We have

yn+1 = yn + hG4(S2, S3) k1 , (55)

where yn, yn+1 and k1 are vectors in IRm and Si are square matrices of dimen-
sion m.

Stages ki (with 1 ≤ i ≤ 3) are given by

k1 = f(yn)

k2 = f(yn + hG2 k1)

k3 = f(yn + hG3(S2) k1) , (56)

(with G2 = c2I) in terms of the square matrices S2 given in (16) and S3 given
by




f11(yn(1) + α1)− f11(yn(1))

e1G3(S2) k1

· · · f1m(yn(m) + αm)− f1m(yn(m))

emG3(S2) k1
...

...

fm1(yn(1) + α1)− fm1(yn(1))

e1G3(S2) k1

· · ·fmm(yn(m) + αm)− fmm(yn(m))

emG3(S2) k1




, (57)

where αj = hejG3(S2) k1 (with 1 ≤ j ≤ m) and ej stands for the vector in
IRm with all null components except the j-th that is 1. Note that the element
in row p and column q (with 1 ≤ p, q ≤ m) in matrix S3 is given by

fpq(yn(q) + heqG3(S2) k1)− fpq(yn(q))

eqG3(S2) k1

. (58)

Obviously Gi k1 stands for the product of matrix Gi and vector k1.

We will begin obtaining the order conditions for the three-stage methods of
polynomial type, that is, for those methods for which the associated functions
G2, G3 and G4 are polynomial functions. More precisely, G2 = c2I (with c2 a
given constant) and the other functions given in the form

G3(S2) = c3

(
I +

r3∑

i=1

a3, 2 2 ··· 2 S i
2

)
, r3 ∈ IN ,

G4(S2, S3) = c4


I +

r∗4∑

i=1

a∗4, σ1 σ2 ···σi
Sσ1Sσ2 · · ·Sσi


 , r∗4 ∈ IN , (59)

where the coefficients a3, 2 2 ··· 2 of the first sum in (59) play a similar role as the
coefficients ai in the scalar case and in the two-stage methods for separated
systems we have seen before. Any of the subscripts σk that appears in the
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second sum of (59) can take the values 2 or 3. We introduce this kind of new
subscripts σk because of the possible non commutativity of products with
matrices S2 and S3 (we must differentiate the coefficients of the products of
these matrices even if the same factors appear in the product but in different
order).

As we have commented in scalar case, only some of the free parameters will
appear in order conditions (because S2 and S3 are O(h)). However, the re-
sulting order conditions are too complicated and therefore we will define a
new matrix S̃3 that will substitute matrix S3 in order to simplify the follow-
ing study. We will take S̃3 = S3 − S2 so that S̃3 = O(h2) holds, and in this
way the number of parameters that will appear in the order conditions is less
than before and the order conditions are simplified. After introducing S̃3 , the
three-stage methods of polynomial type can be rewritten as follows

yn+1 = yn + hG̃4(S2, S̃3) k1 , (60)

where S̃3 = S3 − S2, with S2 and S3 defined as before in terms of the stages
given in (56) and where now

G̃4(S2, S̃3) = c4

(
I +

r4∑

i=1

a4, σ1 σ2 ···σi
Sσ1Sσ2 · · ·Sσi

)
, r4 ∈ IN , (61)

(functions G2 and G3 are given as before). Subscripts σk that appear in the
sum of (61) can take the values 2 and 3. We will take Sσk

= S2 when σk = 2
and Sσk

= S̃3 when σk = 3. From the fact that S2 = O(h) and S̃3 = O(h2) ,
we can note that in the sum of (61) it suffices to consider those subscripts for
which n2 + 2 n3 ≤ r4 , where n2 stands for the number of subscripts σk (from
coefficient a4, σ1 σ2 ···σi

) that take the value 2 and n3 stands for the number of
subscripts σk that take the value 3. So in sum only appear those terms (and
the associated coefficients) that also appear in the order conditions for order
less or equal than r4 + 1.

We will show that now it is not possible to obtain fifth order methods with
only three stages, that is, the situation changes with respect to scalar case.
However it is possible to obtain order four and to retain the remaining good
linear stability properties observed in scalar case. Moreover, as we will see
later, it is possible to satisfy nearly all the order conditions for order five, and
therefore the resulting methods behave as fifth order formulas when applied
to some problems.

To obtain order five it suffices to take r3 = 2 in (59) and r4 = 4 in (61), and
the resulting order conditions are completely given in terms of the parameters
ci (2 ≤ i ≤ 4), a3,2, a3,22 and a4, σ1 σ2 ···σi

(with n2 + 2 n3 ≤ 4).

The order conditions that a three-stage method of polynomial type must sat-
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isfy in order to be a fifth order formula are given by

c4 = 1, (62)

c4a4,2 = 1/2, (63)

c4 (c2(a4,2 − a4,3) + c3a4,3) = 1/3, (64)

c4a4,22 = 1/6, (65)

c4

(
c2
2(a4,2 − a4,3) + c2

3a4,3

)
= 1/4, (66)

c4 (c2(a4,22 − a4,23) + c3a4,23) = 1/12, (67)

c4 (c2(a4,22 − a4,32) + c3(a4,32 + a3,2a4,3)) = 1/4, (68)

c4a4,222 = 1/24, (69)

c4

(
c3
2(a4,2 − a4,3) + c3

3a4,3

)
= 1/5, (70)

c4

(
c2
2(a4,22 − a4,32) + c2

3(a4,32 + 2a3,2a4,3)
)

= 3/10, (71)

c4

(
c2
2(a4,22 − a4,23) + c2

3a4,23

)
= 1/20, (72)

c4

(
c2
2(a4,22 − a4,23 − a4,32 + a4,33)

+c2c3(a4,23 + a4,32 − 2a4,33 + a3,2a4,3) + c2
3a4,33

)
= 2/15, (73)

c4 (c2(a4,222 − a4,322) + c3(a4,322 + a3,22a4,3)) = 1/15, (74)

c4c3a3,2a4,32 = 1/20, (75)

c4 (c2(a4,222 − a4,232 + c3(a4,232 + a3,2a4,23)) = 1/20, (76)

c4 (c2(a4,222 − a4,223 + c3a4,223) = 1/60, (77)

c4a4,2222 = 1/120. (78)

It is easy to check that all these conditions cannot be satisfied at the same
time, but it is possible to satisfy nearly all of them. Therefore, we cannot
obtain any three-stage fifth order formula for separated systems. However,
we can obtain an infinite family of three-stage fourth order methods solving
conditions (62–69). We make it as follows:

Step 1. From (62) we have that c4 = 1 (that is the consistency condition).
After substituting this value in the remaining equations we get directly the
values of coefficients a4,2 , a4,22 and a4,222 from equations (63), (65) and (69).

Step 2. Substituting these values in the rest of equations and solving the non
linear system given by equations (64) and (66) we get the values of c2 and a4,3

in terms of parameter c3

Step 3. Finally we obtain coefficients a4,23 and a3,2 from equations (67) and (68)
in terms of the parameters c3 and a4,32).

We obtain in this way the following solution

c2 =
3− 4c3

2 (2− 3c3)
, c4 = 1 , a4,2 =

1

2
, a4,22 =

1

6
, a4,222 =

1

24
,
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a3,2 =
(9−39c3+58c2

3−30c3
3)+(54−288c3+600c2

3−576c3
3+216c4

3)a4,32

2c3 (2− 3c3)
,

a4,3 =
1

6 (3− 8c3 + 6c2
3)

, a4,23 =
1− c3

6 (3− 8c3 + 6c2
3)

. (79)

The remaining parameters can be arbitrarily chosen.

Additional conditions for order five are given by equations (70–78) and most
of them can be satisfied. In fact, it is possible to satisfy all of them except for
one (equations (71) and (75) cannot be satisfied at the same time). For this
end we can follow the steps:

Step 1. We substitute the values (79) (obtained solving the fourth order con-
ditions) in the nine additional conditions for order five. After this, condi-
tions (70) and (72) give the same equation. We therefore obtain a nonlinear
system of eight equations in eight unknowns (the remaining parameters) that
has no solution.

Step 2. We directly obtain two values for coefficient c3 that satisfy equa-
tion (70) (that is the same as equation (72) after the preceding substitution)
and one value for a4,2222 from equation (78).

Step 3. After substituting the calculated values in the preceding step it is
now possible to obtain directly coefficients a4,33 and a4,223 from equations (73)
and (77) respectively. It can be also observed that equations (71) and (75)
cannot be satisfied at the same time because both depend on parameter a4,32.
We satisfy the first of these equations (obviously it is also possible to satisfy
the second one obtaining two different values for coefficient a4,32).

Step 4. Finally, after substituting the calculated values, we get the remaining
coefficients a3,22 and a4,232 from equations (74) and (76) (a3,22 is given in terms
of the free parameter a4,322).

The values of the coefficients we obtain in this way are

c2 =
6∓√6

10
, c3 =

6±√6

10
, c4 = 1 , a3,2 =

−3± 2
√

6

5
,

a3,22 =
(17 + 144 a4,322)∓ (3 + 96 a4,322)

√
6

50
, a4,2 =

1

2
,

a4,3 =
9±√6

36
, a4,22 =

1

6
, a4,23 =

6∓√6

72
, a4,32 =

−1±√6

8
,

a4,33 =
1± 4

√
6

72
, a4,222 =

1

24
, a4,232 =

−3± 2
√

6

48
,

a4,223 =
3∓√6

144
, a4,2222 =

1

120
. (80)
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Parameter a4,322 and the rest of parameters that do not appear in order five
conditions can be arbitrarily chosen.

Satisfying at step 3 equation (75) (in place of equation (71)) the solution we
obtained in (80) is only modified in the values of coefficients a3,2 , a4,32 and
a4,232 , that must be replaced by the values

a3,2 =
±√6

5
, a4,32 =

−1±√6

12
, a4,232 =

−1±√6

48
, (81)

or

a3,2 =
6∓ 2

√
6

5
, a4,32 =

4±√6

24
, a4,232 =

5∓√6

48
, (82)

because at this case we have two different values for coefficient a4,32 (for each
of the obtained solutions).

In what follows we will study the rational case. A three-stage method of ra-
tional type for systems is given (with the notations introduced in polynomial
case) by an expression like the considered in (60), that is

yn+1 = yn + hG̃4(S2, S̃3) k1 . (83)

The stages k1, k2 and k3 are given as in the polynomial case (see (56)), and so
are also given the matrices S2 and S̃3 (see (16) and (57)). However, functions
G3 and G̃4 are now given by

G3(S2) = c3


I +

d∗3∑

i=1

d3, 2 2 ··· 2 S i
2



−1 

I +
n∗3∑

i=1

n3, 2 2 ··· 2 S i
2


 ,

G̃4(S2, S̃3) = c4


I +

d∗4∑

i=1

d4, σ1 σ2 ···σi
Sσ1Sσ2 · · ·Sσi



−1

·

I +

n∗4∑

i=1

n4, σ1 σ2 ···σi
Sσ1Sσ2 · · ·Sσi


 . (84)

Function G2, as before, is given by G2 = c2I (with c2 a given constant).

Remember that subscripts σk in (84) can take the values 2 or 3 and we take
Sσk

= S2 when σk = 2 and Sσk
= S̃3 when σk = 3. Remember also that in

the sums of (84) defining G̃4 we only will consider these addends of the sum
for which n2 + 2 n3 ≤ d∗4 in the first sum and n2 + 2 n3 ≤ n∗4 in the second
sum holds (here n2 is the number of subscripts for which σk = 2 and n3 the
number of subscripts for which σk = 3).

Now we are going to study the order conditions for the three-stage methods
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of rational type. As we have seen before (when considering the scalar case and
the two-stage methods for systems) we will obtain these order conditions from
those obtained in the polynomial case. However, the possible non commuta-
tivity of the products must be now taken into account.

We begin considering the fourth order conditions for the polynomial type
methods that are given as we have seen by the system of equations (62–69) and
whose solution is given in (79). After determining the coefficients for the three-
stage fourth order methods of polynomial type it suffices to equal functions
G2, G3 and G̃4 associated to the rational methods with those associated to
the polynomial formulas to the adequate order. It is not difficult to see that
it is enough to take n∗3 = d∗3 = 1 and n∗4 = d∗4 = 3 in (84).

Equaling we obtain that G2 is given as in the polynomial case, that is, G2 = c2I
with the constant c2 given in terms of the free parameter c3 as we have seen
in (79). Comparing functions G3 and G̃4 defined by (84) with the correspond-
ing to the polynomial case we get that parameter c3 can be arbitrarily chosen
and that we must take c4 = 1. The remaining coefficients in the definition of
function G3 are given in terms of those calculated in polynomial case (see (79))
through relations

n3,2 = d3,2 + a3,2 , (85)

n4,2 = d4,2 + a4,2 , (86)

n4,3 = d4,3 + a4,3 , (87)

n4,22 = d4,22 + a4,2 d4,2 + a4,22 , (88)

n4,23 = d4,23 + a4,3 d4,2 + a4,23 , (89)

n4,32 = d4,32 + a4,2 d4,3 + a4,32 , (90)

n4,222 = d4,222 + a4,2 d4,22 + a4,22 d4,2 + a4,222 . (91)

Note that we must substitute coefficients given in (79) in these formulas (we
do not make it here for simplicity).

To minimize the principal part of the local truncation error in such a way that
as many as possible order five conditions are satisfied (in fact all except for
one as we have seen in polynomial case), it suffices to take n∗3 = d∗3 = 2 and
n∗4 = d∗4 = 4 in (84). So we obtain that coefficients ci (with 2 ≤ i ≤ 4) are
given as in (80) and that the following relations must hold

n3,2 = d3,2 + a3,2 , (92)

n3,22 = d3,22 + a3,2 d3,2 + a3,22 , (93)

n4,2 = d4,2 + a4,2 , (94)

n4,3 = d4,3 + a4,3 , (95)

n4,22 = d4,22 + a4,2 d4,2 + a4,22 , (96)

n4,23 = d4,23 + a4,3 d4,2 + a4,23 , (97)
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n4,32 = d4,32 + a4,2 d4,3 + a4,32 , (98)

n4,33 = d4,33 + a4,3 d4,3 + a4,33 , (99)

n4,222 = d4,222 + a4,2 d4,22 + a4,22 d4,2 + a4,222 , (100)

n4,223 = d4,223 + a4,3 d4,22 + a4,23 d4,2 + a4,223 , (101)

n4,232 = d4,232 + a4,2 d4,23 + a4,32 d4,2 + a4,232 , (102)

n4,322 = d4,322 + a4,2 d4,32 + a4,22 d4,3 + a4,322 , (103)

n4,2222 = d4,2222 + a4,2 d4,222 + a4,22 d4,22 + a4,222 d4,2 + a4,2222 . (104)

In the preceding relations we must substitute coefficients (80) (modified and
completed if desired with (81) and (82)).

9 Linear stability function of the methods for systems.

The study of the linear stability properties of the methods for systems is now
more complicated that in scalar autonomous case. This is so because when
studying formulas for separated systems we must consider in place of the test
equation y′ = λ y with λ ∈ C, the system test y′ = Ay where A is a square
matrix of dimension m with m different eigenvalues λi ∈ C (1 ≤ i ≤ m) with
negative real parts. With the preceding conditions we know that the exact
solution to this system tends to zero when x tends to infinity and that there
exists a non singular matrix Q with Q−1AQ = Λ = diag[λ1, λ2, . . . , λm]. The
transformation y = Qz enables us to simplify the study of the linear stability
properties of our methods. In fact, this study is reduced to consider the scalar
test equation because the system test and the difference formulas defining our
methods are uncoupled with the preceding transformation. In order to see that
this is so it suffices to apply any p-stage method for systems (given by (5–7))
to the system test y′ = Ay (satisfying all the above mentioned conditions)
obtaining in this way

yn+1 = yn + hGp+1(S2, S3, . . . , Sp) k1 , (105)

where now the stages ki are given recursively by

k1 = Ayn

k2 = A (I + hG2 A) yn

k3 = A (I + hG3(hA) A) yn (106)
...

kp = A (I + hGp(hA, hA, . . . , hA) A) yn ,

because, applied to the system, the square matrices Si satisfy Si = h A (for
i = 2, 3, . . . , p).
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We now define yn = Qwn and ki = Qαi (for i = 1, 2, . . . , p), that is we apply
the transformation to uncouple the system. After multiplying by Q−1 rela-
tions (105) and (106) and making the preceding transformation (remembering
that Q−1AQ = Λ) we get

wn+1 = wn + hGp+1(hΛ, hΛ, . . . , hΛ)) α1 , (107)

with the stages given recursively by

α1 = Λ wn

α2 = Λ (I + hG2 Λ) wn

α3 = Λ (I + hG3(hΛ) Λ) wn (108)
...

αp = Λ (I + hGp(hΛ, hΛ, . . . , hΛ) Λ) wn ,

as can be easily seen observing that relation Q−1Gi(hA, hA, . . . , hA) AQ =
Gi(hΛ, hΛ, . . . , hΛ) Λ holds.

We have seen in this way that the difference systems defining our methods
(when applied to the test system) are uncoupled with the transformation y =
Qw , and obviously the system test is also uncoupled to the form w′ = Λ w
by this transformation. For this reason, in what follows it suffices to consider
the scalar test equation given by y′ = λy with λ ∈ C and <(λ) < 0, when
studying the linear stability properties of the methods for separated systems.

When we apply a p-stage method for systems defined by (5–7) to the scalar
test equation, we obtain

yn+1 = R(z) yn , (109)

where R(z) is the linear stability function associated, with z = hλ. From (5–7)
we obtain recursively

k1 = λ yn

S2 = z

S3 = z (110)
...

Sp = z ,

and therefore the linear stability function takes the form

R(z) = 1 + z Gp+1(z, z, . . . , z) . (111)

Note that with the modification in the definition of matrices Si (by including
functions Gi) with respect to scalar case, the linear stability function is now
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given in a more simple form than in the similar expression given in [7].

At this point we also note that with the modification introduced when studying
the three-stage methods for separated systems by introducing the matrix term
S̃3 = S3 − S2, we have from (110) that S̃3 = 0 (when method is applied to
scalar test equation). Therefore the linear stability function is given in this
case by R(z) = 1 + z G̃4(z, 0) , as can be deduced from (60).

10 A first example of L-stable three-stage method of order four.

We have seen before an example of L-stable two-stage method of order three
for separated systems, together with some numerical experiments to illustrate
the good performance of this formula when applied to different stiff problems.

We also obtained the general form for the three-stage methods of order four
for separated systems. Obviously most of these methods are not interesting
because of the high computational cost associated. However, many of the
methods perform well in many problems because of the high order obtained
an the good linear stability properties (the formulas contain approximations
to the Jacobian matrix with no additional function evaluations). To reduce the
computational cost associated we will only consider those formulas for which
only one LU factorization per step is necessary. We also will look for methods
with good linear stability properties such as A-stability and L-stability, in
order to obtain formulas that perform well when applied to stiff problems.

In what follows we are going to see a first example of a three-stage L-stable
method of order four for separated systems. We look for methods whose as-
sociated linear stability function is a rational function with only one real pole
(so that only one LU factorization per integration step is necessary) as oc-
curs, for example, with the SDIRK methods. It is not difficult to see that to
obtain an order four L-stable method, whose linear stability function has an
unique real pole, the multiplicity of this pole must be greater or equal than
four. There exists only one real value of the pole that enable us to obtain the
preceding properties with multiplicity four, and this value is given by the root
of polynomial

24 x4 − 96 x3 + 72 x2 − 16 x + 1 , (112)

that takes approximately the value a ≈ 0.57281606 (see [11], pp. 96–98 for
more details). The corresponding linear stability function is the rational func-
tion R(z) with numerator of degree three and denominator of degree four, that
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is given in terms of the preceding value a by

R(z) =
6+6(1−4a)z+3(1−8a+12a2)z2+(1−12a+36a2−24a3)z3

6 (1− a z)4
. (113)

We can obtain a method satisfying all the above requirements as follows:

Step 1. We take the following values for the free parameters a4,32 and c3 in (79)

a4,32 = 0 , c3 =
6 +

√
6

10
. (114)

Note that the value we are taking for c3 is the same we obtained for three-stage
fifth order methods in scalar case.

Step 2. We substitute these values in (79) and the so obtained solution (that
assures order four for the three-stage methods of polynomial type) in rela-
tions (85–91). We obtain in this way a family of three-stage fourth order
methods of rational type. Note that any of these formulas is completely de-
termined from the values of the coefficients d∗.

Step 3. Finally, between all these many options that we have in order to obtain
a method with the desired linear stability function, we take this obtained by
making zero the following coefficients

d4,3 = d4,23 = d4,32 = 0 , (115)

and taking

d3,2 = −a , (116)

we obtain in terms of the above mentioned value a the solution

c2 =
6−√6

10
, c3 =

6 +
√

6

10
, c4 = 1 , d3,2 = −a ,

d4,2 =−4 a , d4,3 = 0 , d4,22 = 6 a2 , d4,23 = 0 , d4,32 = 0 ,

d4,222 =−4 a3 , d4,2222 = a4 , n3,2 =
(6− 5 a)−√6

5
,

n4,2 =
1− 8 a

2
, n4,3 =

9 +
√

6

36
, n4,22 =

36 a2 − 12 a + 1

6
,

n4,23 =
6 (1− 12 a)− (1 + 8 a)

√
6

72
, n4,32 = 0 ,

n4,222 =
−96 a3 + 72 a2 − 16 a + 1

24
. (117)

The remaining parameters are taken equal to zero.
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Note that in the preceding formula we have introduced the coefficient d4,2222

that do not appear in fourth order conditions. We make it because, as we have
commented before, to obtain L-stability the denominator in the associated
linear stability function (113) must be of degree four.

Now we will briefly comment why we make zero the coefficients in (115). We
make zero the coefficients d∗ in (115) corresponding to those terms with at
least one the factor S̃3, that is, the coefficient has at least one 3 in the subscript.
We make this so that when making the LU factorization only the matrix S2

appears.

We have taken the parameter d3,2 = −a in (116) so that no additional LU
factorizations are necessary to calculate the stages (in fact stage k3). It seems
better to reduce the computational cost associated with the method by making
zero coefficient d3,2 in (116), but different numerical experiments show that
with this choice for the parameter the errors grow when integrating many stiff
problems with moderate stepsizes h.

Note at this point that the three-stage fourth order L-stable formula we have
obtained (and other formulas we can obtain in a similar way) performs better,
with respect to number of function evaluations per integration step, than
SDIRK methods of Runge-Kutta type. In [11], pp. 98 it is shown that at
least four stages are necessary to obtain a SDIRK formula of order four and
L-stable.

In what follows, we will illustrate with some numerical experiments the per-
formance of the obtained L-stable formula.

11 Some numerical experiments with stiff problems.

We now repeat the numerical experiments of the preceding sections with our
new three-stage fourth order L-stable method.

When we apply this method to the ODE system associated to Burgers’ equa-
tion (by the MOL approach) that we described in (23), taking the values
N = 24 and ν = 0.2 and integrating with fixed stepsize h = 0.04 , we obtain
the Figure 3 for the numerical solution. This figure is very similar to Figure 1
obtained in [6] for the two-stage third order method.

In Figure 4 we show, in double logarithmic scale, the error E (in the Euclidean
norm in IR24) at point t = 1 that we obtain integrating with fixed stepsize
h = 2−k for k = 2, 3, . . . , 10 the preceding problem. When comparing this
figure with the Figure 2 obtained in [6] for the two-stage third order method,
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Fig. 3. Numerical solution: MOL approach to Burg-
ers’ equation taking ν = 0.2 , N = 24 and h = 0.04 .
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Fig. 4. Error as a function
of stepsize (double logarith-
mic scale) for our method.

we can note that for great values of the stepsize h the order three formula
performs slightly better than the fourth order one. However, when reducing
the stepsize h the fourth order formula performs much better than the third
order one as expected.
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Fig. 5. Error as a function of the step-
size in double logarithmic scale for our
method (autonomous problem).
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Fig. 6. Error as a function of the step-
size in double logarithmic scale for our
method (non autonomous problems).

In Figure 5 we show in double logarithmic scale the error E (for x = 10) in the
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Euclidean norm, we obtain when integrating along 10 · 2k steps problem (24)
with fixed stepsizes h = 2−k for k = 0, 1, . . . , 10. The values for the parameters
in this problem are taken as for the two-stage third order method in a preceding
numerical experiment (for comparison purposes). So we can compare the new
results with those obtained for the two-stage method (see Figure 1). It can
be observed (comparing the figures) that for the values b = 1000000 (crosses
in the figure) and b = 10000 (circles) we obtain similar results with both
methods. In both cases, for the range of stepsizes considered, we can observe
that the order seems to be nearly two (lower than the expected order). Taking
b = 100 (diamonds) we see in Figure 5 that the order grows from two to four
when the stepsize is reduced and that the error is lower than the obtained
with the two-stage method. As we have pointed out before, this observed
reduction of the order is related with the concept of B-convergence and many
implicit methods show also this behaviour when applied to some non linear
stiff differential equations. Finally, for the value b = 1 (squares) problem is
not stiff and our fourth order method gives a numerical approximation to the
exact solution much better than those obtained with the two-stage formula.

We also repeat the numerical experiments with problems A and B (see (26)
and (28) respectively) and the obtained results are shown in Figure 6 . Com-
paring this figure with Figure 2 obtained for the third order method, we can
observe that in both problems we obtain similar results with the two methods
for the range of stepsizes considered.

12 Some other A-stable and L-stable methods of two and three
stages.

In preceding sections we have obtained two L-stable methods for separated
systems and now we will give some other methods in order to complete our
study.

From the general form of the two-stage third order methods of rational type
for separated systems (see 50–53) we will now obtain an A-stable formula. We
begin considering a function G3(S2) of the form (I−a S2)

−2 N(S2) for a certain
constant a ∈ IR and a certain polynomial function N of degree two, so that
only one LU factorization will be necessary per integration step. In order to
obtain a method of order three, we must take in (53) the values d1 = −2 a and
d2 = a2 (the remaining parameters are taken ni = di = 0 for i ≥ 3). Now it
suffices to obtain the value of constant a so that the resulting formula becomes
A-stable. Remembering that, as we have seen in a preceding section, the linear
stability function R associated to the method is given by R(z) = 1 + z G3(z) ,
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we obtain

R(z) =
6 + 6 (1− 2a) z + 3 (1− 4a + 2a2) z2 + (1− 6a + 6a2) z3

6 (1− a z)2
, (118)

and we get the value of constant a making zero the coefficient of z3 in the
numerator of (118), that is, solving equation 1− 6a + 6a2 = 0. From the two
different values we obtain in this way we have that the one for A-stability is
given by

a =
3 +

√
3

6
≈ 0.78867513 . (119)

For more details related to the A-stability associated to the above function
R(z), the book [11] pp. 97 is again a good reference. Summarizing, the values
of the parameters we must take in order to obtain the A-stable two-stage third
order method for separated systems are given by

c2 =
2

3
, c3 = 1, d1 = −3+

√
3

3
, d2 =

2+
√

3

6
, n1 = −3+2

√
3

6
. (120)

We now are going to see how to obtain a L-stable two-stage third order method
of rational type for systems that minimizes the principal part of the local
truncation error. To this end we begin considering the general form (50–52),
but where now function G3 takes the form (54), from which we can conclude
that the method satisfies all the required properties except for the L-stability.
As for other methods obtained previously, we take function G3(S2) of the
form (I−aS2)

−4 N(S2) for a certain constant a ∈ IR and a certain polynomial
function N of degree three. This moves us to take in (54) the values d1 = −4 a,
d2 = 6 a2, d3 = −4 a3 and d4 = a4 (the remaining parameters di take the value
zero and ni = 0 for i ≥ 4). The value of the constant a is determined in such
a way that the resulting formula is L-stable. Making zero the coefficient of z4

in the numerator of the linear stability function R(z), it is easy to check that
we obtain the following linear stability function

R(z) =
6+6(1−4a)z+3(1−8a+12a2)z2+(1−12a+36a2−24a3)z3

6 (1− a z)4
, (121)

for the resulting L-stable method, in terms of the value of a that is given as the
root of polynomial 1−16 a+72 a2−96 a3 +24 a4 = 0 that takes approximately
the value

a ≈ 0.57281606 . (122)

In [11], pp. 98 we can find this value of a for the L-stability. Note that the
value of a in (122) is the same that we obtained in Section 10 for the three-
stage fourth order L-stable formula. Moreover, the linear stability function
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associated to this three-stage method (see (113)) and to the last two-stage
method obtained are the same.

The two-stage third order L-stable formula with minimization of the principal
part of the local truncation error is completely determined (in term of the
value of a given in (122)) by the values

c2 =
2

3
, c3 = 1 , d1 = −4 a , d2 = 6 a2 , d3 = −4 a3 ,

d4 = a4 , n1 =
1− 8 a

2
, n2 =

1− 12 a + 36 a2

6
,

n3 =
1− 16 a + 72 a2 − 96 a3

24
, (123)

and making zero all the other parameters.

Now we will describe a three-stage fourth order A-stable method of rational
type for separated systems. We begin considering the general form obtained
in Section 8, from which we will obtain the formula following the steps:

Step 1. We take the values for the free parameters a4,32 and c3 in (79)

a4,32 = 0 , c3 =
6 +

√
6

10
. (124)

Note that the value taken for c3 is the same that gives us order five with three
stages in the scalar case (see [7]).

Step 2. After substituting these values in (79) we substitute the obtained
solution (that gives us order four for the three-stage methods of polynomial
type) in relations (85–91). We obtain in this manner a family of three-stage
methods of rational type and order four, that is completely given in terms of
the values of the coefficients d∗.

Step 3. Between all possible choices to obtain a method whose associated linear
stability function is given as we want, we take the one obtained by making
zero the following coefficients

d4,3 = d4,23 = d4,32 = 0 , (125)

and taking the remaining free parameters as follows

d3,2 = −a , d4,2 = −3 a , d4,22 = 3 a2 , d4,222 = −a3 , (126)

so that only one LU factorization will be necessary per integration step.

Step 4. Finally we get the value of constant a in such a way that the resulting
formula becomes A-stable. For this end we obtain a as the root of equation
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−1 + 12 a− 36 a2 + 24 a3 = 0 that takes approximately the value

a ≈ 1.06857902 , (127)

and the linear stability function associated to the method is given in terms of
the constant a by

R(z) =
6+6(1−3a)z+3(1−6a+6a2)z2+(1−9a+18a2−6a3)z3

6 (1− a z)3
. (128)

In [11], pp. 97 we can find this value of a for the A-stability.

The three-stage fourth order A-stable formula is completely determined (in
term of the value of a given in (127)) by the values

c2 =
6−√6

10
, c3 =

6 +
√

6

10
, c4 = 1 , d3,2 = −a ,

d4,2 =−3 a , d4,3 = 0 , d4,22 = 3 a2 , d4,23 = 0 ,

d4,32 = 0 , d4,222 = −a3 , n3,2 =
(6− 5 a)−√6

5
,

n4,2 =
1− 6 a

2
, n4,3 =

9 +
√

6

36
, n4,22 =

18 a2 − 9 a + 1

6
,

n4,23 =
6 (1− 9 a)− (1 + 6 a)

√
6

72
, n4,32 = 0 ,

n4,222 =
−24 a3 + 36 a2 − 12 a + 1

24
, (129)

and making zero the remaining parameters.

Finally we will obtain a three-stage fourth order method of rational type for
systems being L-stable and minimizing the principal part of the local trunca-
tion error. In a previous section we obtained the general form of the three-stage
fourth order methods of rational type for systems, that minimize the principal
part of the local truncation error. Between many possible choices we give the
steps followed by us to obtain the formula:

Step 1. We make zero the free parameter a4,322 in (80) and substitute the
values obtained in this way in relations (92–104). We get in this manner the
coefficients of a family of three-stage fourth order methods of rational type
for systems that minimize the principal part of the local truncation error.
Any method of this family is completely determined from the values of coef-
ficients d∗.

Step 2. Between all different possibilities we have to obtain a formula whose
associated linear stability function is given as we want, we decided to make
zero all coefficients d∗ that appear multiplied by terms containing the factor S3.
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The remaining free parameters are taken as follows

d3,2 =−2 a , d3,22 = a2 , d4,2 = −5 a , d4,22 = 10 a2 ,

d4,222 =−10 a3 , d4,2222 = 5 a4 , d4,22222 = −a5 . (130)

In the preceding formula we have introduced coefficient d4,22222 which does not
appear neither in order four conditions nor in order five conditions (that we
take into account to minimize the principal part of the local truncation error).
We make this because we look for a L-stable method and so the linear stability
function associated to the formula must have a denominator of degree five.

Step 3. Finally we get the value of constant a in such a way that the resulting
formula is L-stable. We must take a as the root of polynomial −1 + 25 a −
200 a2 + 600 a3 − 600 a4 + 120 a5 = 0 that takes approximately the value

a ≈ 0.27805384 , (131)

and the linear stability function R(z) associated to the resulting method is
given in terms of a by

R(z) =
24+24(1−5a)z+12(1−10a+20a2)z2

24 (1− a z)5
(132)

+
4(1−15a+60a2−60a3)z3+(1−20a+120a2−240a3+120a4)z4

24 (1− a z)5
.

In [11], pp. 98 we can find this value of a giving us the L-stability property.

The obtained coefficients for the method are given by

c2 =
6−√6

10
, c3 =

6 +
√

6

10
, c4 = 1 , d3,2 = −2 a ,

d3,22 = a2 , d4,2 = −5 a , d4,22 = 10 a2 , d4,222 = −10 a3 ,

d4,2222 = 5 a4 , d4,22222 = −a5 , n3,2 =
−(3 + 10 a) + 2

√
6

5
,

n3,22 =
(17 + 60 a + 50 a2)− (3 + 40 a)

√
6

50
, n4,2 =

1− 10 a

2
,

n4,3 =
9 +

√
6

36
, n4,22 =

60 a2 − 15 a + 1

6
,

n4,23 =
6 (1− 15 a)− (1 + 10 a)

√
6

72
, n4,32 =

−1 +
√

6

8
,

n4,33 =
1 + 4

√
6

72
, n4,222 =

−240 a3 + 120 a2 − 20 a + 1

24
,

n4,223 =
3 (1− 20 a + 120 a2) + (−1 + 10 a + 40 a2)

√
6

144
,
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n4,232 =
3 (−1 + 10 a) + 2(1− 15 a)

√
6

48
,

n4,2222 =
600 a4 − 600 a3 + 200 a2 − 25 a + 1

120
, (133)

in terms of the value of a given in (131) and making zero the remaining free
parameters.

13 Numerical experiments with the two and three-stage A-stable
and L-stable methods: Van der Pol’s equation.

In order to illustrate the good behaviour of the GRK-methods obtained we
will now study some numerical experiments. We will apply our methods to
some problems and compare the results obtained with those we get with some
classical formulas.

The first problem we consider, involves the well known Van der Pol’s equation
that is given by

ε z′′ + (z2 − 1) z′ + z = 0 , z(0) = a , z′(0) = b . (134)

Note that our methods cannot be applied to the system of first order ODEs
given by

z′ = y z(0) = a

y′ =
1

ε
((1− z2) y − z) y(0) = b

(135)

we obtain transforming in the usual way this second order equation, because
the resulting system is not a separates one. However, using Liénard’s coordi-
nates (see [11], pp. 372 for more details) the problem (134) takes the form

y′ = −z y(0) = ε b− a +
a3

3

z′ =
1

ε

(
y + z − z3

3

)
z(0) = a

(136)

and now our methods can be applied to this system.

We integrate this problem in the interval [0, 0.5] , taking ε = 10−5. We have
considered the following initial conditions

y(0) = 0.66666000001234554549467 , z(0) = 2. , (137)

obtained from those considered in [11], pp. 403, by taking the Liénard’s co-
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ordinates. With the six methods obtained, we have integrated the preceding
problem with fixed stepsize h and we have calculated the relative error ob-
tained in both components at the point 0.5. Errors are measured with respect
to a reference solution obtained with a very accurate variable step method (the
’gear’ method implemented in MAPLEV, working with 30 digits and taking
a tolerance of 10−20) that is enough for our purposes.

For comparison purposes we have also integrated this problem with the two-
stage third order Rosenbrock method that can be found for example in [10],
pp. 334, and known as Calahan’s method.
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Fig. 7. Relative error (first component)
as a function of the stepsize in dou-
ble logarithmic scale for the third order
methods.
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Fig. 8. Relative error (second compo-
nent) as a function of the stepsize in
double logarithmic scale for the third
order methods.

In Figures 7 and 8 we show the relative errors corresponding to the first and
second components respectively as a function of the stepsize h (taking h =
0.1 ·2−k for k = 0, 1, 2, . . . , 12) in double logarithmic scale for the different third
order methods. Calahan’s method is represented in these figures by squares.
With diamonds we represent the third order A-stable method, with circles the
first third order L-stable formula we obtained and with crosses the last third
order L-stable method we have developed.

It can be observed in these figures that Calahan’s method performs better than
our three methods when big values of the stepsize are considered. When we
take smaller stepsizes our methods perform very similarly to Calahan’s formula
and some of them perform even better than this Rosenbrock formula. Note
at this point that the problem considered is very stiff, with one of the eigen-
values of the associated Jacobian matrix in the interval [−300000,−150000]

34



and the other eigenvalue being small and negative along the integration in-
terval. Note also that Calahan’s method needs an evaluation of the Jacobian
matrix associated to the problem per integration step and that our methods,
as we have pointed out before, incorporate an approximation to this Jacobian
matrix obtained from matrix S2/h (with no extra evaluations). This explains
what happens when the stepsize h is big, because when this is so we have
that the approximation that gives matrix S2 to the Jacobian matrix is usually
not too good (and in some problems this gives worse approximations to the
solution). It can be expected that this formulas will perform better by using
variable stepsizes, but we will not study this here.
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Fig. 9. Relative error (first component)
as a function of the stepsize in double
logarithmic scale for the fourth order
methods.
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Fig. 10. Relative error (second compo-
nent) as a function of the stepsize in
double logarithmic scale for the fourth
order methods.

We repeated the preceding numerical experiment with the three obtained
fourth order formulas. Results are shown in Figures 9 and 10 . In this fig-
ure we represent with diamonds the A-stable method, with circles the first
fourth order L-stable formula obtained and with crosses the last fourth order
L-stable method proposed. For the formula represented by crosses in these
figures we have eliminated the results that are obtained for great values of
the stepsize h. We make this because in some of the integrations the matrix
whose inverse we must calculate is singular for any of the integration steps.
We also observe that, for big stepsizes, the numerical results are not as good as
expected, being worse than those obtained with the third order formulas. The
reason for that is the same we have commented previously for the two-stage
formulas, but now situation is even worse because the approximation S3/h to
the Jacobian matrix (for big stepsizes) is worse than the obtained from ma-
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trix S2/h. However, it can be observed that reducing the stepsize situation is
rapidly much better.

Even though the two and three-stage formulas proposed have some problems
for moderate stepsizes (as we have pointed out before) they give good ap-
proximations to the exact solution of the problem. In fact, we obtain good
approximations to the solution integrating with stepsizes much greater than
those we can consider when integrating with any classical explicit formula.
The order reduction observed for this problem also occurs for other A-stable
and L-stable Runge-Kutta type formulas (see [11], pp. 403–404).

14 Numerical experiments with the two and three-stage A-stable
and L-stable methods: Burgers’ equation.

Now we will consider another problem. More precisely, we will repeat the
numerical experiment of a preceding section with the system of ODEs given
by (23). In this problem, obtained by the method of lines approach to the
Burgers’ equation, we will consider the values N = 24 and ν = 0.2.
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Fig. 11. Error as a function of the step-
size in double logarithmic scale for the
third order methods.
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Fig. 12. Error as a function of the step-
size in double logarithmic scale for the
fourth order methods.

In Figure 11 we show in double logarithmic scale the error E (measured with
the Euclidean norm in IR24) at the point t = 1, obtained by integrating this
problem with the different third order methods, taking fixed stepsize h = 2−k

for the values k = 3, 4, . . . , 10. We have represented the methods in this figure
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with the same symbols as in Figures 7 and 8. It can be observed in the figure
that Calahan’s method performs slightly better than our proposed formulas
when big values of the stepsize h are considered, but when this stepsize is
reduced our methods perform very similarly to Calahan’s formula and some
of them perform even better than the Calahan’s formula. For this problem the
three proposed formulas give very similar approximations to solution, as can
be seen in the figure. It is easily seen that the slopes of the curves represented
in the figure are near to three (as expected).

When we repeat the last numerical experiment taking the three fourth order
methods, we get Figure 12. We have represented the formulas in this figure
with the same symbols as in Figures 9 and 10. It can be observed that, for big
values of the stepsize, the approximations we get from the the fourth order
methods are in some cases slightly worse than those obtained from the third
order methods. However, for smaller stepsizes the fourth order methods per-
form much better than the third order ones. We also observe that the method
that gives the better approximations for small stepsizes is that represented by
crosses in the figure (but this is also the method with the greatest computa-
tional cost associated). The slopes of the curves represented in the figure are
nearly four when the stepsize considered is reduced.

15 Conclusions.

In this second part we have introduced and studied a new family of methods
for the numerical integration of some systems of ODEs. These new methods
seem quite promising, for instance in the context of solving some nonlinear
parabolic equations (by the method of lines approach). We have shown that
with the family of linearly implicit methods we have proposed here, it is possi-
ble to attain order three with only two stages and order four with three stages,
as well as some interesting linear stability properties such as A-stability and
L-stability. Our methods do not require Jacobian evaluations in their imple-
mentation and therefore require less computational work than other classical
implicit and linearly implicit methods that can be applied to stiff problems.

In subsequent works we will study as in [2] how to obtain formulas (belonging
to the family of GRK-methods) from any prefixed linear stability function.
This can be of great interest when considering perturbed problems for which
the exact solution of the unperturbed problem is known in advantage, be-
cause we can obtain methods specifically designed to integrate exactly the
unperturbed problem.

We will also extend our GRK-methods in order to obtain formulas with built-
in error estimates, that is, embedded GRK-methods.
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[5] J. Álvarez and J. Rojo, A New Family of Explicit Two-Stage Methods of
order Three for the Scalar Autonomous IVP, Intl. Journal of Applied Sc. &
Computations 5 (1999) 246–251.
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