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Abstract

The classical configuration of the power spectrum of a homogeneous

turbulent flow provides a functional relation between energy and enstro-

phy which may be used to find the evolution of energy in the intermediate

stages of finite time and viscosity to which the usual asymptotic arguments

do not apply. The method has a minimal computational cost compared

with the direct numerical integration of the whole Navier-Stokes system.

It is applied here to study the energy evolution both theoretically and

numerically, obtaining the minima of energy compatible with the power

spectra as well as the rate of decay of the energy towards them. The

results may be useful to study the compatibility of the Kolmogorov and

Kraichnan spectra with the observed energy evolution of a turbulent flow.
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1 Introduction

While the spatial behavior of turbulent fluids is by definition extremely com-
plicated, there are at least two features which are actually more predictable for
turbulent than nonturbulent flows. One of them is the power spectrum, and
the other the time asymptotics in unforced homogeneous turbulence. Let us
first recall briefly the main facts of the problem: unforced incompressible fluids
satisfy the Navier-Stokes equations, written after normalization of constants as

∂u
∂t

= ν∇2u− u · ∇u−∇p

∇ · u = 0, (1)

where u is the fluid velocity and p the pressure. For any domain U with Dirichlet
boundary conditions u |∂U= 0, or for the whole space with adequate hypotheses
of decrease at infinity, the kinetic energy

E =
1
2

∫

U

|u|2 dV (2)

satisfies the equation

dE

dt
= −νΩ, (3)

where

Ω =
∫

U

|∇u|2 dV (4)

is the fluid enstrophy. When the domain U is bounded, the energy decays at
least exponentially in time. This goes as well for periodic problems: however,
for the whole space, which we will study from now on, the problem is much
more complicated. Batchelor and Proudman [1] argued that the energy of tur-
bulent flows of zero mean decays like t−5/2, while Saffman [2] proposed t−3/2

for flows of nonzero mean. For two-dimensional turbulence the scaling should
behave respectively as t−2, t−1. Although their arguments are partly heuristic,
it is worth noting that essentially the same results have been proved rigorously
for any flow [3]. From the viewpoint of turbulence, however, this limit is not
very interesting. In the last stages of its evolution the flow has in fact stopped
to be turbulent and is merely a laminar one with complex structure. Instead
the asymptotics studied are as follows: take a fixed time large enough for turbu-
lence to have developed, and consider the limit of the energy as a function of the
viscosity ν when ν tends to zero. Since viscosity is usually rather low for turbu-
lence to exist, this theoretical limit is the one really found in experiments and
modelizations for much of the fluid evolution. To find its precise value we need
to address a second important aspect of turbulent flows: the power spectrum.
If we define E(k) as the energy of all the modes with frequency of modulus k,

E(k) =
∫

|k|=k

|û(k)|2 dσ(k), (5)
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where û denotes the Fourier transform of u, the function k → E(k) is called
the power or energy spectrum of the flow; naturally it depends on time. The
invariance of the unforced Navier-Stokes equation under the scaling x → lx,
t → l1−ht, u → lhu, ν → l1+hν yields the following result [4]: the energy must
have the form

E(k, ν) = kqg(kta, νtb),

for a certain function g, where a = 2/(3 + q), b = −(1 + q)/(3 + q). For very
small viscosity, the dependence of g on its second variable could be ignored [5].
Obviously the value of q cannot be the same for different parts of the spectrum:
for the inertial range it should agree with the Kolmogorov value q = −5/3,
whereas such negative exponent would yield infinite energy if it holds in the
integral (subinertial) range. Thus q should be found in every portion of the
spectrum by modelization and observation, as in [5]. For infinite domains q is
expected to be 2, and the next power in the Taylor expansion of E should be 4:

E(k, t) = B0k
2 + B2(t)k4 + o(k4). (6)

This expansion should hold in dimension three, while the powers of k decrease
by one in dimension two: this is because the area of the sphere of radius k
scales like k2, whereas the circumference length does with k. The reason to
concentrate in these powers is that the coefficients B0 and B2 have a precise
physical interpretation and can be expected to be robust, which is not so clear
for q < 2 [6]. B0 is the mean of u, which is constant by linear momentum
conservation; whereas, at least when the two-point correlation of the velocity
decays fast enough in space, B2 is, except by a factor, approximately the angular
momentum. Anyway we will assume (6) to hold in the integral range, aware
that it is at best an approximation.

B2 would also be constant if the so-called Loitsianski integral exists, a point
defended in [7]. Most authors prefer a weak dependence of B2 in time, B2(t) ∼
tγ , γ ∼ 0.25 [8]. For large times, most of the energy is assumed to be contained
in the largest scales where this description of E holds, so the size of B2 is
crucial. The above formula is assumed to hold in the so-called integral range.
The hypothesis that energy cascades without viscous loss in the next range
prompted Kolmogorov (see e.g. [9]) to propose a potential decay of E(k) in
this range, called the inertial one: details will be presented later. This picture
was amended in dimension two by Kraichnan [10, 11]. The inertial range is
followed by the dissipative one, where E decreases exponentially and therefore
its contribution to the total energy is minimal. The arguments are debatable,
but the success of this description is undeniable: experiments, observations and
models have repeatedly confirmed the essential correctness of the scheme. They
also show a rather good agreement in the transition from the integral to the
inertial ranges: a certain smoothing takes place, specially in dimension three,
but the point of contact ki between the two ranges is located very approximately
at the intersection of the graphs of the respective functions of k [12].
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Our main purpose is to take advantage of the above description of the spec-
trum to integrate (3) exactly, and therefore to find the energy decay rate irre-
spective of any asymptotics.

It may be argued that several of the parameters involved in the spectrum
structure are imperfectly known, and therefore the results will depend exces-
sively on speculative values. In particular, we mention the behavior at the junc-
tion of the integral and inertial spectra, and the corrections to the Kolmogorov-
Kraichnan exponents due to finite viscosity. However, the fact that both energy
and enstrophy are integrals means that their dependence with respect to the
function to be integrated is very weak: small changes in the function at small
portions of the range will have an even smaller response in the integral. Thus
our results are robust with respect to parameter variation. Second, one of our
objectives is to provide a criterion to assert the compatibility of classical spec-
tra with the observed flow evolution. While the energy depends on a single
integral and therefore may be rather easily found both in theoretical and ex-
perimental models, the spectrum is more costly and subject to errors. Thus we
know that a departure from predicted energy decay rates will mean a deviation
from the classical spectrum, without the need to find it explicitly. This method
may conceivably be applied to other turbulent phenomena for which numeri-
cal integration of the system has not been performed as often as for standard
hydrodynamics. Examples of this are magnetohydrodynamics (MHD) and elec-
tron magnetohydrodynamics (EMHD). The mechanism of energy transfer, and
therefore the shape of the inertial range, is still a much debated topic in MHD:
whether it follows Kolmogorov or Iroshnikov-Kraichnan statistics is a point of
contention (see e.g. [13, 14, 15, 16]). As for EMHD, some information of the
spectrum is available [17]. A comparison of (3) with the measured energy de-
cay rate may therefore provide information on the shape and extension of the
inertial range in these cases.

2 Three-dimensional homogeneous turbulence

According to the Kolmogorov phenomenology, in the inertial range

E(k, t) = Cε(t)2/3k−5/3, (7)

where ε(t) represents the energy flux from larger to smaller scales: we will com-
ment later on its traditional meaning. For the moment, let us take it simply as
an unknown function, and let us define v(t) = Cε(t)2/3 to simplify the equa-
tions. C is the Kolmogorov-Obukhov constant: although it should be universal,
its value varies somewhat with experiments, C ' 1.4− 2.

The disipative cut-off is found by equating in the Navier-Stokes equation the
dissipative and advective terms. Its theoretical value is

kd(t) = ε(t)1/4ν−3/4 = C−3/8ν−3/4v(t)3/8. (8)
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However the experimental value of kd may vary by as much as a factor of ten
from the theoretical one [9], so we will allow a multiplicative nondimensional
constant A in its definition, and by calling α = AC−3/8, we get

kd(t) = αν−3/4v(t)3/8. (9)

As stated before, we will ignore the contribution of the dissipative range to
both the energy and the enstrophy: the exponential decay of the spectrum
there makes its contribution extremely small.

We will consider the zero mean case and therefore we assume that in the
integral range E has the form

E(k, t) = B2(t)k4. (10)

Therefore the integral cut-off is determined by the continuity of the spectrum,
which is a well attested fact:

B2(t)ki(t)4 = v(t)ki(t)−5/3. (11)

The smoothing present in the graph is limited to a small neighborhood of ki [18]
and therefore its effect upon the total energy may be ignored without serious
error. Notice that since v(t) will decrease in time and B2(t), if anything, grows
with t, ki should decrease in time, a point confirmed in modelization. Adding
the contribution of both ranges to the total energy, we get

E(t) =
1
2

∫ ki(t)

0

B2(t)k4 dk +
1
2

∫ kd(t)

ki(t)

v(t)k−5/3 dk

=
17
20

B2(t)2/17v(t)15/17 − 3
4
α−2/3ν1/2v(t)3/4. (12)

Notice that the last negative term does not represent the contribution of the
second integral, which is of course positive.

As for the enstrophy, since Ω(k, t) = 2k2E(k, t),

Ω(t) =
∫ ki(t)

0

B2(t)k6 dk +
∫ kd(t)

ki(t)

v(t)k1/3 dk

= −17
28

B2(t)−4/17v(t)21/17 +
3
4
α4/3ν−1v(t)3/2. (13)

According to the Kolmogorov phenomenology, ε represents the energy dissipa-
tion rate ε = νΩ. From a strict mathematical viewpoint, this overdetermines
the problem and makes unlikely the existence of a solution to (3) with the
expressions (12) and (13). In fact, rewriting Ω as a function of ε we obtain

Ω(t) = −17
28

B2(t)−4/17C21/17ε(t)14/17 +
3
4
α4/3C3/2ν−1ε(t),

which is not exactly ν−1ε. However, we must remember that the Kolmogorov
theory is an asymptotic one, holding for very small ν (although as asserted, the
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spectrum shape is valid for a rather large range of viscosities). For ν very small,
the second term in the previous formula predominates, and this has the form
ν−1ε times an universal constant, introduced to account for different experi-
mental results, and which should be one in the Kolmogorov framework. The
agreement is satisfactory, but we must remember that we use only the spectrum
shape as an hypothesis, not the specific traditional meaning of some variables.

Since the energy must be positive, the function v must lie within a certain
range: specifically, it must occur

17
15

B2(t)2/17v(t)9/68 > α−2/3ν1/2, (14)

which given the small value of the viscosity is satisfied for very small v (and
therefore very small energy). A negative value of the energy would mean ki > kd,
which is absurd. Since the enstrophy should also be positive, we must have

21
17

B2(t)4/17v(t)9/34 > α−4/3ν. (15)

This condition implies that the energy is positive, since (17/15)2 > 21/17. This
must be taken into account in the integration of (3). The initial value v(0)
should be taken so that Ω(0) > 0, and integration can be carried out for as long
as Ω(t) > 0. If for a certain t0 we reach a value of v such that (15) becomes an
equality and Ω(t0) = 0, since E(t0) > 0 and E′ = −νΩ, E does not decrease
beyond this value, so that E(t) ≥ E(t0). The fact that the energy has a positive
lower value is of course unphysical in the long run, which emphasizes the fact
that our description of the spectrum is transitory. It is true that this minimum
value of the energy decreases with ν, but we cannot expect that integration
of (3) for fixed viscosity will yield a decrease of E like a negative power of t:
instead we will find E(t) ∼ E0 + bt−r, where E0 is the minimum of energy. Two
parameters are of interest: this minimal energy E0 compatible with our power
spectrum, and the rate r with which E decreases to E0. E0 may be found a
priori in certain cases: when B2 does not depend on t, the equation has two
critical points, 0 and the value v0 > 0 for which the expression of Ω vanishes.
In our case this is

v0 =
(

17
21

)34/9

B
−8/9
2 α−136/27ν34/9. (16)

Since v0 is an attractive node and we start with v(0) such that Ω(0) > 0, any
solution will tend to E0 given by (12) with v = v0, i.e.

E0 =

(
17
20

(
17
21

)10/3

− 3
4

(
17
21

)17/6
)

α−40/9ν10/3B
−2/3
2

' (0.08119) α−40/9ν10/3B
−2/3
2 . (17)

Anyway, both E0 and r will be computed numerically: E0 by studying the limit
of E(t) for large t. r may be found in several different ways: the simplest is to
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consider

r = − lim
t→∞

log(E(t)− E0)
log t

. (18)

While this works reasonably well, it needs to know beforehand the value E0.
Also, for E(t) near E0, rounding errors may provide a negative E(t)−E0, which
may lead to problems with the logarithm. The next method has turned out to
be far more robust: take any fixed c > 1, and let

W (t) =
E(tc2)− E(tc)
E(tc)− E(t)

. (19)

If E tends to a constant like a negative power of t, W (t) will stay away from
zero. The power t−r may be found by

r = − 1
log c

lim
t→∞

log(W (t)). (20)

A moment’s reflection will show us that for an expression of E(t) ∼ a + bt−r, r
is indeed this limit. The same arguments apply to the two-dimensional case.

Classically it is assumed that ν → 0, so that E0 → 0 and ki ¿ kd. In
this situation, we can obtain some analytic estimates: The dominant terms in
energy and enstrophy are respectively

E(t) ∼ 17
20

B2(t)2/17v(t)15/17,

Ω(t) ∼ 3
4
α4/3ν−1v(t)3/2. (21)

The resulting equation yields, except for numerical factors (independent of ν)
the solution

E(t) ∼
(

E(0)−7/10 +
∫ t

0

B2(s)−1/5 ds

)−10/7

, (22)

so that, for a behavior of B2(t) ∼ tγ , we have

E(t) ∼ t(−10/7)+(2γ/7), (23)

as foreseen by the classical theory. However, this approximation essentially
means that all the energy is concentrated in the vicinity of ki and all the enstro-
phy in the vicinity of kd, which is rather rough. Therefore, we have integrated
numerically (3) with the values of energy and enstrophy given respectively by
(12) and (13). Not only the possible value of the limit r is relevant: the value of
(20) for large but finite time is perhaps even more meaningful, specially if for a
long time the rate of decay follows a well defined law. We have already empha-
sized that the spectrum does not maintain the same form for ever. In fact, while
the decay of the energy to a threshold level is robust in all the cases studied,
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we have found that r tends to stabilize for a large interval of time, after which
its behavior tends to be more erratic. It is unlikely that this effect is only due
to numerical errors: apparently there exist other terms in the energy evolution
besides E(t) ∼ a+ bt−r which eventually become dominant. The interval where
the exponent r behaves well is approximately proportional to the size of B2. In
all the cases it is ample enough to account for the evolution of r for as much
time as one could expect the spectrum structure to hold.

The following graphics show the evolution of the energy and minus the ex-
ponent of convergence r for B2(t) = 1, 10, 100 and 1000. We have taken a
logarithmic scale on the time axis, although the numbers indicate the correct
value of t, and the trial values α = 1, ν = 1/16.

The initial values are unimportant and are chosen only to make a clear
picture: the rate of decay depends only on the size of B2.

INSERT FIGURE 1 HERE

The value of −r is plotted in Figure 2. We see that near the end of the scale
the value of −r for B2 = 1 begins the irregular behavior we mentioned earlier.
Again, the limit values of −r do not depend on the initial conditions. They lie
in a band between 1.4 and 1.7.

INSERT FIGURE 2 HERE

The same graphs are shown in Figure 3 for the energy and the exponent for
another standard case: B2 = βt0.25 for β = 1, 10, 100 and 1000. The graphs
are practically identical to the previous ones.

INSERT FIGURE 3 HERE

By contrast, we see in Figure 4 that the convergence of −r is better for this
case: the limit seems to lie between 1.3 and 1.6.

INSERT FIGURE 4 HERE

Notice that for much of its evolution, the curves are nearly equidistant. This
suggests a behavior of the exponent as a function of β, both in the constant and
in the time-dependent cases, as

−r(β) ∼ −r(1)− k(t) log β, (24)
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where k(t) tends to a constant. By integrating further, one in fact finds k(t) → 0,
so that the limit exponent is the same for all cases. However, we refrain from
stating formally this by two reasons: the erratic behavior of −r for t very large
and β small, and our repeated warnings about the duration of the spectrum
structure.

3 Two-dimensional homogeneous turbulence

Kraichnan [10] proposed a direct cascade of enstrophy instead of energy for
two-dimensional turbulence. A scaling argument shows that the energy in the
inertial range decays like

E(k, t) = η(t)2/3k−3 (25)

where η represents now the enstrophy flux. The exponent −3 is not as universal
as −5/3 in three-dimensional turbulence: logarithmic corrections of the type

E(k, t) = η(t)2/3k−3

(
a + log

(
k

ki

))−1/3

(26)

have been proposed [19], and experiments show often a decay in k−µ, µ > 3
(see e.g. [20]). Other models, however, show reasonable concordance with k−3

and we will take this for concretion: the method may be applied to any other
decrease. Near k = 0, the Taylor expansion of E starts as mentioned previously
by

E(k, t) = B0k + B2(t)k3 + o(k3). (27)

We will assume that the flow has mean zero and therefore B0 = 0. Modelization
shows that the shape of the integral spectrum follows quite accurately the graph
of k3 and that the transition from the integral to the inertial range resembles
strongly the union of the graphs of k3 and k−3 [21]. Thus, denoting for simplicity
v(t) = η(t)2/3, the junction point should satisfy

B2(t)ki(t)3 = v(t)ki(t)−3, (28)

and therefore

ki(t) = B2(t)−1/6v(t)1/6. (29)

On the other hand, the dissipative cut-off lies at

kd(t) = ν−1/2η(t)1/6 = ν−1/2v(t)1/4. (30)

For simplicity, and without modifying the rate of decay of the energy, we will
omit possible constants in front of kd. Thus the energy becomes

E(t) =
1
2

∫ ki(t)

0

B2(t)k3 dk +
1
2

∫ kd(t)

ki(t)

v(t)k−3 dk

=
3
8
B2(t)1/3v(t)2/3 − 1

4
νv(t)1/2, (31)
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whereas the enstrophy is

Ω(t) =
∫ ki(t)

0

B2(t)k6 dk +
∫ kd(t)

ki(t)

v(t)k−1 dk

=
1
6
B2(t)ki(t)6 + v(t) log

(
kd(t)
ki(t)

)

=
1
6
v(t) + v(t) log

(
ν−1/2B2(t)1/6v(t)1/12

)
. (32)

As in the three-dimensional case, v cannot be arbitrarily small for the energy
to be positive. In this instance, the inequality

3
2
B2(t)1/3v(t)1/6 > ν, (33)

must hold. As before, this occurs if the enstrophy is positive:

e1/3B2(t)1/3v(t)1/6 > ν, (34)

since (3/2)3 > e.
We can study as well the case where B2 is constant in time, although this

is less likely in dimension two. If this occurs, the critical points of the equation
are the two zeroes of the enstrophy, i.e. 0 and

v = e−2ν6B−2
2 , (35)

so that the minimum value of the energy for this spectrum to hold is

E0 =
(

3
8
e−4/3 − 1

4
e−1

)
ν4B−1

2 ' (0.00688) ν4B−1
2 . (36)

The approximation performed in the three-dimensional case should now be less
succesful, since the quicker decrease in the inertial range means that while kd >
ki, it is not much larger. Indeed, simulations show in many cases kd/ki < 100
[21]. It is therefore acceptable to take log(kd/ki) as a magnitude of order 1.
Thus, if we suppress the term k−2

d in the energy and take the enstrophy with
the order of v, the approximation of (3) becomes, omitting numerical constants

d

dt
(B2(t)1/3v(t)2/3) ∼ −v(t), (37)

whose solution yields

E(t) ∼
(

E(0)−1/2 +
∫ t

0

B2(s)−1/2 ds

)−2

, (38)

so that, if B2(s) ∼ sβ , E(t) ∼ tβ−2. For β = 1, the energy decays as t−1,
as observed in [21] for this particular election of Reynolds number: the enstro-
phy decays like t−2, as predicted by Batchelor [11]. However, other rates have
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been observed, although for β > 2 the energy would actually increase, which is
unacceptable.

As in the three-dimensional case, we have integrated numerically the evo-
lution of energy and exponent for the classical cases B2 = β and B2 = βt,
β = 1, 10, 100 and 1000. Figure 5 shows the values of the energy for B2 con-
stant in time. After a slow initial decay, the energy tends rapidly to the threshold
value.

INSERT FIGURE 5 HERE

The evolution plotted in Figure 6 shows that the convergence of the exponent
to a common value (about 1.75) is much more obvious in this two-dimensional
case. Notice, however, that the empirical law (24) still holds: the graphics tend
to be equidistant. A different choosing of initial conditions could mask this
effect in the short run, but it establishes itself rather quickly.

INSERT FIGURE 6 HERE

Figure 7 shows that the energy decays more slowly when B2 = βt. This is to
be expected, since a growth of B2 with time means an increase of energy in the
largest scales. Also, for larger β, the rate of decay is lower.

INSERT FIGURE 7 HERE

Finally, Figure 8 indicates convergence of −r to a value near 1. We have needed
to stretch the scale of time up to 105 because of the slower rate of convergence
in this case; in the two-dimensional case the problems controlling −r are less
serious than in the three-dimensional one. Again, (24) holds satisfactorily.

INSERT FIGURE 8 HERE

4 Conclusions

The classical description (Kolmogorov-Kraichnan) of the power spectrum in
homogeneous turbulent flows entails a functional relation between energy and
enstrophy which may be exploited to find the energy evolution without the
heavy computational cost of numerical integration of the whole Navier-Stokes
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system. Integration of the ordinary differential equation of energy decay will
provide us with estimates appropriate for the intermediate stages of time and
small, but not vanishingly small, viscosity which are in fact the most realistic
and to whom classical asymptotics arguments do not apply. This is studied
here both in dimensions two and three, allowing for several forms of the Taylor
coefficient B2(t) of the energy proposed by different authors. In contrast to
what happens in the asymptotic limits t → ∞ and ν → 0, energy will have a
positive minimum here, which is perfectly reasonable since the standard shape
of the power spectrum is transitory and our results only apply to this stage.
These minima as well as the rate of decay of the energy towards them are
studied theoretically and numerically. The decay of the energy towards this
minimum is a robust feature in all the cases, but the exponent of decay depends
strongly on the number of dimensions and the time dependence of B2. In
the three-dimensional case these exponents lie in a narrow band: separation
between them seems to be proportional to log β, where B2(t) = βta for the
classical values a = 0, a = 0.25. They appear to converge to a common value
in dimension two, this time for the standard values a = 0 and a = 1; again a
logarithmic separation among the graphs is noticeable. Since the total energy is
much less costly to calculate than the full power spectrum, these results may be
used to find if any given turbulent flow follows or not Kolmogorov-Kraichnan
statistics, without the need to compute the Fourier components of the velocity.
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FIGURE CAPTIONS

1 (nunez fig01.eps): FIG.1. Evolution of the energy for time-independent B2.

2 (nunez fig02.eps): FIG.2. Exponent of convergence for time-independent B2.

3 (nunez fig03.eps): FIG.3. Evolution of the energy for B2 = βt0.25.

4 (nunez fig04.eps): FIG.4. Exponent of convergence for B2 = βt0.25.

5 (nunez fig05.eps): FIG.5. Evolution of the energy for time-independent B2.

6 (nunez fig06.eps): FIG.6. Exponent of convergence for time-independent B2.

7 (nunez fig07.eps): FIG.7. Evolution of the energy for B2 = βt.

8 (nunez fig08.eps): FIG.8. Exponent of convergence for B2 = βt.
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