E.T.S. de Ingenieros Industriales MÉTODOS MATEMÁTICOS I EXAMEN ORDINARIO

2001-02

(05/02/2002)

1 Considérese la familia de métodos de RUNGE-KUTTA de 3 etapas y explícitos dados por el tablero

$$\begin{array}{c|cccc}
0 & & & & & \\
c_2 & & a_{21} & & & \\
c_3 & & a_{31} & a_{32} & & & \\
& & 0 & 0 & b_3 & & \\
\end{array}$$

- a) ¿Para qué valores de los parámetros c_2 , c_3 , a_{21} , a_{31} , a_{32} y b_3 los métodos son de orden 2?
- b) De los métodos anteriores, ¿cuáles minimizan además el término de error?
- c) ¿Existen valores de los parámetros c_2 , c_3 , a_{21} , a_{31} , a_{32} y b_3 para los que los métodos sean de orden 3?
- d) Para la familia de métodos propuesta, calcúlese la función de estabilidad en términos de c_2 , c_3 , a_{21} , a_{31} , a_{32} y b_3 . Calcúlese esta misma función para los métodos de orden 2, los que minimizan el error y los de orden 3 que, en su caso, se hayan podido obtener.

(3 puntos)

2 Para el problema parabólico

$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in [0, l], t \ge 0,$$

$$u(x, 0) = f(x), \quad u(0, t) = 0, \quad u(l, t) = 0,$$

con condiciones de contorno homogéneas, se considera el método en diferencias finitas dado por

$$\frac{u_{n\,m} - u_{n\,m-1}}{k} - \alpha^2 \frac{u_{n+1\,m} - 2\,u_{n\,m} + u_{n-1\,m}}{h^2} = 0.$$

- a) Dígase qué orden posee el error de truncación de dicho método.
- b) Descríbase la molécula computacional del método.
- c) Úsese el método de FOURIER para estudiar la estabilidad.

(3 puntos)

3 Para comprobar la eficiencia de un método de tipo Runge–Kutta, que denotaremos por m1, se integra el problema test conocido como problema de Bessel

$$y'' + 100y = -y/(4t^2), \quad t \in [0.1, 10],$$

y se comparan los resultados numéricos con otros dos métodos, uno de ellos de paso variable, que denotaremos por **m2**, y el otro de paso fijo, que denotaremos por **m3**. De los datos presentados en las tablas adjuntas ¿se puede deducir con qué orden están funcionando los métodos? ¿Cuál es el que tiene mejor comportamiento? 'nfcn' representa el número de evaluaciones de función.

h	nfcn_{m1}	error _{m1}	$\log_{10}(\mathrm{error})$
1/2	390	0.10710061210^{-1}	-1.970208044
$1/2^2$	790	0.32475473710^{-4}	-4.488444504
$1/2^3$	1580	0.17326551310^{-6}	-6.761287871
$1/2^4$	3160	0.92103484210^{-9}	-9.035723940
$1/2^5$	6330	0.40580384510^{-11}	-11.39168384
$1/2^6$	12670	0.16417416410^{-13}	-13.78469518

Table 1: Método m1.

tol	$nfcn_{m2}$	$\mathrm{error_{m2}}$	$\log_{10}(\mathrm{error})$
10^{-3}	180	0.12007567110^{-1}	-1.920544976
10^{-4}	308	0.22406908610^{-2}	-2.649618057
10^{-5}	524	0.29345327010^{-3}	-3.532461046
10^{-6}	816	0.32517806610^{-4}	-4.487878755
10^{-7}	1332	0.39793022110^{-5}	-5.400193076
10^{-8}	2264	0.43661346910^{-6}	-6.359902870
10^{-9}	3896	0.44522505210^{-7}	-7.351420406
10^{-10}	6824	0.45556368510^{-8}	-8.341450902
10^{-11}	11932	0.47351959110^{-9}	-9.324662047

Table 2: Método m2.

h	$nfcn_{m3}$	$\mathrm{error_{m3}}$	$\log_{10} (\mathrm{error})$
1/2	156	0.18842258210^{-1}	-1.724867048
$1/2^2$	316	0.50113690310^{-2}	-2.300043614
$1/2^3$	632	0.43077124910^{-3}	-3.365753290
$1/2^4$	1264	0.29911412710^{-4}	-4.524163074
$1/2^5$	2532	0.18553236710^{-5}	-5.731580312
$1/2^6$	5068	0.11409754110^{-6}	-6.942723712
$1/2^{7}$	10136	0.70333217810^{-8}	-8.152839512

Table 3: Método m3.

(1 punto)

(Recuérdese que las prácticas pueden alcanzar un valor de 3 puntos)